首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Metallic nanorods exhibit fascinating optical properties due to surface plasmons—collective oscillation of the electron cloud within a particle. They exhibit two principle absorption bands that correspond to surface plasmon resonance (SPR) along the longitudinal and transverse directions of the nanorod. Most importantly, the longitudinal band can be tuned with the aspect ratio of the rod, making it a spectrally tuneable optical material, which can be applied to a variety of devices from bioimaging to high‐density optical storage. Here, spectral encoding for high‐density optical storage applications is demonstrated on two sizes of gold nanorods (aspect ratios of three and five) doped in a silica sol–gel matrix by femtosecond pulsed laser irradiation. It is widely known that high‐power pulsed laser irradiation causes metal nanorods to undergo shape transformations via the process of melting or fragmentation. The process is enhanced if the laser wavelength is tuned at the longitudinal surface plasmon resonance peak of the nanorods, which results in a significant reduction or shift in the surface plasmon resonance peak. As such a shape change occurs only on the subpopulation of rods that have a longitudinal plasmon band matching the laser wavelength, a size‐ or spectrum‐selective shape transition is possible in a rod mixture with varying aspect ratios. The current spectral encoding technology can be incorporated into existing optical disc technology, such as three‐dimensional bit‐by‐bit and holographic, and can increase the capacity limit by utilizing the spectral domain.  相似文献   

3.
报道了纳米银颗粒的局域表面等离子体共振能显著提高全息聚合物分散液晶(H-PDLC)光栅的衍射效率。着重分析了球形纳米银颗粒在PDLC中的表面等离子体共振特性,根据Mie理论,模拟计算了球形纳米银颗粒在PDLC材料中的消光光谱并得出了相应的表面等离子体共振峰值,且该值与用光谱仪测得的材料吸收峰值相近。同时,根据准静态近似理论,模拟了球形纳米银颗粒在特定波长的光照射下的球内外电场分布。证明了球形纳米银颗粒在聚合物分散液晶材料中发生表面等离子体共振,当用与共振峰值相近的激光对材料进行曝光时,可以增强液晶与聚合物的相分离过程,所制备的光栅样品结构更加整齐平滑,从而提高了光栅的衍射效率。  相似文献   

4.
We report on the significantly enhanced photoluminescence (PL) of hybrid double‐layered nanotubes (HDLNTs) consisting of poly(3‐methylthiophene) (P3MT) nanotubes with various doping levels enveloped by an inorganic, nickel (Ni) metal nanotube. From laser confocal microscopy PL experiments on a single strand of the doped‐P3MT nanotubes and of their HDLNTs, the PL peak intensity of the HDLNT systems increased remarkably up to ~350 times as the doping level of the P3MT nanotubes of the HDLNTs increased, which was confirmed by measurements of the quantum yield. In a comparison of the normalized ultraviolet and visible absorption spectra of the doped‐P3MT nanotubes and their HDLNTs, new absorption peaks corresponding to surface‐plasmon (SP) energy were created at 563 and 615 nm after the nanoscale Ni metal coating onto the P3MT nanotubes, and their intensity increased on increasing the doping level of the P3MT nanotube. The doping‐induced bipolaron peaks of the HDLNTs of doped‐P3MT/Ni were relatively reduced, compared with those of the doped‐P3MT nanotubes before the Ni coating, due to the charge‐transfer effect in the SP‐resonance (SPR) coupling. Both energy‐transfer and charge‐transfer effects due to SP resonance contributed to the very‐large enhancement of the PL efficiency of the doped‐P3MT‐based HDLNTs.  相似文献   

5.
A novel dry plasma methodology for fabricating directly stabilized substrate‐supported gold nanoparticle (NP) ensembles for near infrared surface enhanced Raman scattering (NIR SERS) is presented. This maskless stepwise growth exploits Au‐sulfide seeds by plasma sulfidization of gold nuclei to produce highly faceted Au NPs with a multiple plasmon resonance that can be tuned from the visible to the near infrared, down to 1400 nm. The role of Au sulfidization in modifying the dynamics of Au NPs and of the corresponding plasmon resonance is discussed. The tunability of the plasmon resonance in a broad range is shown and the effectiveness as substrates for NIR SERS is demonstrated. The SERS response is investigated by using different laser sources operating both in the visible and in the NIR. SERS mapping of the SERS enhancement factor is carried out in order to evaluate their effectiveness, stability, and reproducibility as NIR SERS substrates, also in comparison with gold NPs fabricated by conventional sputtering and with the state‐of‐the‐art in the current literature.  相似文献   

6.
A simple, fast, and versatile approach to the fabrication of outstanding surface enhanced Raman spectroscopy (SERS) substrates by exploiting the optical properties of the Ag nanoparticles and functional as well as organizational characteristics of the polymer brushes is reported. First, poly(2‐(dimethylamino)ethyl methacrylate) brushes are synthesized directly on glassy carbon by self‐initiated photografting and photopolymerization and thoroughly characterized in terms of their thickness, wettability, morphology, and chemical structure by means of ellipsometry, contact angle, AFM, and XPS, respectively. Second, Ag nanoparticles are homogeneously immobilized into the brush layer, resulting in a sensor platform for the detection of organic molecules by SERS. The surface enhancement factor (SEF) as determined by the detection of Rhodamine 6G is calculated as 6 × 106.  相似文献   

7.
The photosensing properties of flexible large‐area nanowire (NW)‐based photosensors are enhanced via in situ Al doping and substrate straining. A method for efficiently making nanodevices incorporating laterally doped NWs is developed and the strain‐dependent photoresponse is investigated. Photosensors are fabricated by directly growing horizontal single‐crystalline Al‐doped ZnO NW arrays across Au microelectrodes patterned on a flexible SiO2/steel substrate to enhance the transportation of carriers and the junction between NWs and electrodes. The Raman spectrum of the Al:ZnO NWs, which have an average diameter and maximum length of around 40 nm and 6.8 μm, respectively, shows an Al‐related peak at 651 cm?1. The device shows excellent photosensing properties with a high ultraviolet/visible rejection ratio, as well as extremely high maximum photoresponsivity and sensitivity at a low bias. Increasing the tensile strain from 0 to 5.6% linearly enhances the photoresponsivity from 1.7 to 3.8 AW?1 at a bias of 1 V, which is attributed to a decrease in the Schottky barrier height resulting from a piezo‐photonic effect. The high‐performance flexible NW device presented here has applications in coupling measurements of light and strain in a flexible photoelectronic nanodevice and can aid in the development of better flexible and integrated photoelectronic systems.  相似文献   

8.
The effective transfer of strong electromagnetic field from the gold core through the coating shell represents the most significant challenge for the applications of plasmonic nanoparticles. This study applies a one‐step arc discharge method to synthesize graphitic carbon‐encapsulated gold nanoparticles (Au@G NPs) functionalized with amino groups uniformly via adding NH3 into He background gas. By tailoring the coating shell into few‐layered graphene, a strong localized surface plasmon resonance (LSPR) absorption band is achieved. The NH3 introduces H radicals to strengthen the LSPR characteristic by etching the coating graphitic shell, as well as provides dissociated NH or NH2 species to functionalize the surfaces with amino groups. With an LSPR‐based colorimetric method, it is demonstrated that trace Cu2+ ions can be detected rapidly with excellent sensitivity (as low as 10 × 10‐9m linearly) and selectivity against other metal ions (Na+, K+, Mg2+, Ca2+, Co2+, Fe2+, Cd2+, Pb2+, and Hg2+ ions) by amino‐functionalized Au@G NPs in water samples.  相似文献   

9.
A new kind of pH and temperature sensitive material is reported. It is composed of dye‐doped polymer nanoparticles incorporated into a thin film of a polyurethane hydrogel. The new pH/temperature‐sensitive nanoparticles are obtained by post‐staining oxygen‐impermeable amino‐functionalized polyacrylonitrile nanoparticles with a long‐lifetime reference dye. Staining is followed by covalently linking fluorescein isothiocyanate onto the surface of the nanoparticle. The new sensor material has several distinct features: a) it enables imaging of pH via time domain dual‐lifetime referencing; b) effects of temperature on pH sensing may be compensated for; and c) temperature can simultaneously be visualized via rapid lifetime imaging. The new material enables referenced and temperature‐compensated pH imaging with superior spatial resolution due to the use of nanosized sensor nanoparticles.  相似文献   

10.
The synthesis of large lattice mismatch metal‐semiconductor core–shell hetero‐nanostructures remains challenging, and thus the corresponding optical properties are seldom discussed. Here, we report the gold‐nanorod‐seeded growth of Au–CdS core–shell hetero‐nanorods by employing Ag2S as an interim layer that favors CdS shell formation through a cation‐exchange process, and the subsequent CdS growth, which can form complete core–shell structures with controllable shell thickness. Exciton–plasmon interactions observed in the Au–CdS nanorods induce shell thickness‐tailored and red‐shifted longitudinal surface plasmon resonance and quenched CdS luminescence under ultraviolet light excitation. Furthermore, the Au–CdS nanorods demonstrate an enhanced and plasmon‐governed two‐photon luminescence under near‐infrared pulsed laser excitation. The approach has potential for the preparation of other metal‐semiconductor hetero‐nanomaterials with complete core–shell structures, and these Au–CdS nanorods may open up intriguing new possibilities at the interface of optics and electronics.  相似文献   

11.
SiO2 and TiO2 thin films with gold nanoparticles (NPs) are of particular interest as photovoltaic materials. A novel method for the preparation of spin‐coated SiO2–Au and TiO2–Au nanocomposites is presented. This fast and inexpensive method, which includes three separate stages, is based on the in situ synthesis of both the metal‐oxide matrix and the Au NPs during a baking process at relatively low temperature. It allows the formation of nanocomposite thin films with a higher concentration of Au NPs than other methods. High‐resolution transmission electron microscopy studies revealed a homogeneous distribution of NPs over the film volume along with their narrow size distribution. The optical manifestation of localized surface plasmon resonance was studied in more detail for TiO2‐based Au‐doped nanocomposite films deposited on glass (in absorption and transmittance) and silicon (in specular reflectance). Maxwell–Garnett effective‐medium theory applied to such metal‐doped nanocomposite films describes the peculiarities of the experimental spectra, including modification of the antireflective properties of bare TiO2 films deposited on silicon by varying the concentration of metal NPs. The antireflective capabilities of the film are increased after a wet etching process.  相似文献   

12.
13.
One‐, two‐, and three‐dimensional microstructures with dispersed silver nanoparticles are fabricated by a combination of photopatterning and thermal treatment from a silver salt containing photosensitive epoxy resin. Ultraviolet photo‐irradiation and subsequent thermal treatment are combined to control the rate of silver salt reduction, the size and the arrangement of nanoparticles, as well as the reticulation of the epoxy resin. This approach allows the creation of high resolution 1‐, 2‐, and 3D patterns containing silver nanoparticles, with a homogeneous distribution of nanoparticles regardless of the irradiated area.  相似文献   

14.
An important goal and major challenge of material science and nanotechnology is building nanomotors for manipulating the motion of nanoparticles (NPs). Here, it is demonstrated that patterned, stimulus‐responsive polymer brush microstructures can be used as motor arrays to manipulate the movement of gold NP aggregates in response to external stimuli that induce a conformational change in the brushes as the driving force. The motion of NP aggregates in the out‐of‐plane direction is achieved with displacements ranging from nanometers to sub‐micrometers. These patterned polymer‐brush microstructures can find applications as efficient motor arrays and nanosensors, and benefit the design of more complex nanodevices.  相似文献   

15.
The ability to synthesize plasmonic nanomaterials with well‐defined structures and tailorable size is crucial for exploring their potential applications. Gold nanoplates (AuNPLs) exhibit appealing structural and optical properties, yet their applications are limited by difficulties in thickness control. Other challenges include a narrow range of tunability in size and surface plasmon resonance, combined with a synthesis conventionally involving cytotoxic cetyltrimethylammonium (CTA) halide surfactant. Here, a one‐step, high‐yield synthesis of single‐crystalline AuNPLs is developed, based on the combined use of two structure‐directing agents, methyl orange and FeBr3, which undergo preferential adsorption onto different crystalline facets of gold. The obtained AuNPLs feature high shape homogeneity that enables mesoscopic self‐assembly, broad‐range tunability of dimensions (controlled thickness from ≈7 to ≈20 nm, accompanied by modulation of the edge length from ≈150 nm to ≈2 µm) and plasmonic properties. These merits, coupled with a preparation free of CTA‐halide surfactants, have facilitated the exploration of various uses, especially in bio‐related areas. For example, they are demonstrated as biocompatible photothermal agents for cell ablation in NIR I and NIR II windows. This work paves the way to the innovative fabrication of anisotropic plasmonic nanomaterials with desired attributes for wide‐ranging practical applications.  相似文献   

16.
A new, highly sensitive and uniform three‐dimensional (3D) hybrid surface‐enhanced Raman scattering (SERS) substrate has been achieved via simultaneously assembling small Ag nanoparticles (Ag‐NPs) and large Ag spheres onto the side surface and the top ends of large‐scale vertically aligned cone‐shaped ZnO nanorods (ZnO‐NRs), respectively. This 3D hybrid substrate manifests high SERS sensitivity to rhodamine and a detection limit as low as 10?11 M to polychlorinated biphenyl (PCB) 77—a kind of persistent organic pollutants as global environmental hazard. Three kinds of inter‐Ag‐NP gaps in 3D geometry create a huge number of SERS “hot spots” that mainly contribute to the high SERS sensitivity. Moreover, the supporting chemical enhancement effect of ZnO‐NRs and the better enrichment effect ascribed to the large surface area of the substrate also help to achieve a lower detection limit. The arrays of cone‐shaped ZnO‐NRs decorated with Ag‐NPs on their side surface and large Ag spheres on the top ends have potentials in SERS‐based rapid detection of trace PCBs.  相似文献   

17.
Three‐dimensional microstructures are fabricated utilizing direct laser writing combined with a non‐radical step polymerization based on multiphoton‐induced Diels–Alder chemistry of o‐quinodimethanes and maleimides. Woodpile photonic crystals with a total of five axial periods and a rod spacing of down to 500 nm are fabricated. The structures are characterized via scanning electron microscopy and focused ion beam milling. In addition, corresponding photonic stop bands are investigated via light microscopy as well as transmission and reflection spectroscopy. The Diels–Alder based network formation during direct laser writing is verified via infrared spectroscopy. Spatially resolved surface patterning of covalently bonded functional molecules on fabricated structures is demonstrated by employing the direct laser writing setup and a bromine containing maleimide. The successful surface modification is verified via time‐of‐flight secondary ion mass spectrometry.  相似文献   

18.
The performance of graphene‐based hybrid materials greatly depends on the dispersibility of nanoscale building blocks on graphene sheets. Here, a quick green synthesis of nanoscale graphene (NG) nanosheets decorated with highly dispersed silver nanoparticles (AgNPs) is demonstrated, and then the electrospinning technique to fabricate a novel nanofibrous membrane electrode material is utilized. With this technique, the structure, mechanical stability, biochemical functionality, and other properties of the fabricated membrane electrode material can be easily controlled. It is found that the orientations of NG and the dispersity of AgNPs on the surface of NG have significant effects on the properties of the fabricated electrode. A highly sensitive H2O2 biosensor is thus created based on the as‐prepared polymeric NG/AgNP 3D nanofibrous membrane‐modified electrode (MME). As a result, the fabricated biosensor has a linear detection range from 0.005 to 47 × 10?3m (R = 0.9991) with a supralow detection limit of 0.56 × 10?6m (S/N = 3). It is expected that this kind of nanofibrous MME has wider applications for the electrochemical detection and design of 3D functional nanomaterials in the future.  相似文献   

19.
Lithium‐ion capacitors (LICs) are hybrid energy storage devices that have the potential to bridge the gap between conventional high‐energy lithium‐ion batteries and high‐power capacitors by combining their complementary features. The challenge for LICs has been to improve the energy storage at high charge?discharge rates by circumventing the discrepancy in kinetics between the intercalation anode and capacitive cathode. In this article, the rational design of new nanostructured LIC electrodes that both exhibit a dominating capacitive mechanism (both double layer and pseudocapacitive) with a diminished intercalation process, is reported. Specifically, the electrodes are a 3D interconnected TiC nanoparticle chain anode, synthesized by carbothermal conversion of graphene/TiO2 hybrid aerogels, and a pyridine‐derived hierarchical porous nitrogen‐doped carbon (PHPNC) cathode. Electrochemical properties of both electrodes are thoroughly characterized which demonstrate their outstanding high‐rate capabilities. The fully assembled PHPNC//TiC LIC device delivers an energy density of 101.5 Wh kg?1 and a power density of 67.5 kW kg?1 (achieved at 23.4 Wh kg?1), and a reasonably good cycle stability (≈82% retention after 5000 cycles) within the voltage range of 0.0?4.5 V.  相似文献   

20.
This work presents the fabrication of 3D‐printed composite objects based on copper(II) 1D coordination polymer ( CP1 ) decorated with thymine along its chains with potential utility as an environmental humidity sensor and as a water sensor in organic solvents. This new composite object has a remarkable sensitivity, ranging from 0.3% to 4% of water in organic solvents. The sensing capacity is related to the structural transformation due to the loss of water molecules that CP1 undergoes with temperature or by solvent molecules' competition, which induces significant change in color simultaneously. The CP1 and 3D printed materials are stable in air over 1 year and also at biological pHs (5–7), therefore suggesting potential applications as robust colorimetric sensors. These results open the door to generate a family of new 3D printed materials based on the integration of multifunctional coordination polymers with organic polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号