首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了原料气中乙烷含量对Cr/MSU-1催化剂上CO_2氧化丙烷脱氢反应的影响,并考察了反应温度和空速的影响。保持总烷烃与CO_2的体积比为1:3,当原料气总空速及烷烃总量恒定时,提高乙烷的含量对丙烷转化率影响不大,但烯烃选择性先升高后降低;当原料气总空速及丙烷含量恒定时,加入乙烷降低了丙烷转化率,提高了丙烯的选择性及收率;随反应温度的升高,丙烷及总烷烃的转化率增大,丙烯及总烯烃的选择性减小,其变化规律与单一丙烷的脱氢过程一致;提高空速丙烷的转化率降低,烯烃的选择性增加。在最佳反应条件即反应温度650℃、丙烷与乙烷的体积比3:2、空速8 400 mL/(h·g)下,总烷烃转化率为50.0%,总烯烃选择性为92.2%,丙烯选择性为83.1%。  相似文献   

2.
采用炼油厂丙烷气进行了丙烷脱氢制丙烯反应及再生工艺的研究,在小试评价装置上分别考察反应温度、空速、载气等对丙烷脱氢反应的影响,考察了催化剂的再生性能,优化再生条件,并对催化剂的失活原因进行了分析。研究结果表明:随着反应温度的提高和空速的下降,丙烷转化率不断提高,但选择性逐渐下降;在600℃、丙烷空速400 h~(-1)的条件下,丙烷转化率为43.41%,丙烯选择性为81.29%,丙烯收率大于35.29%;经过6次再生后,催化剂性能保持稳定,炼油厂丙烷气不会造成催化剂中毒,催化剂失活的主要原因是积炭,失活催化剂在550~580℃经过0.5 h的烧炭即可恢复性能。  相似文献   

3.
在盐浴等温固定床反应器中,考察了气态空速、催化剂颗粒尺寸、反应温度和压力对Co基催化剂上费托合成中烯烃二次反应行为的影响。实验结果表明,烯烃选择性随气态空速的增加而显著提高,高气态空速不利于烯烃的二次反应;烯烃选择性随催化剂颗粒尺寸的增大而减小,表明内扩散限制加剧了烯烃二次反应;反应温度由493K升至533K时,CO转化率从24.73%增至84.08%,烷烃分布向轻质烃方向移动,烯烃选择性略有降低;反应压力由0.5MPa升至2.5MPa时,CO转化率由51.32%增至97.48%,烷烃分布向重质烃方向移动,而烯烃选择性基本不变。在实验条件范围内,气态空速对烯烃二次反应的影响最为显著。  相似文献   

4.
采用等体积浸渍法制备Pt-Sn/γ-Al2O3催化剂,并使用KNO3或KCl对其进行改性制备Pt-Sn-K/γ-Al2O3催化剂。采用固定床反应器,在580℃、0.1MPa、氢气/异丁烷体积比2、进料总空速2000h-1(异丁烷空速667h-1)条件下,评价催化剂的异丁烷脱氢催化性能。同时,使用XRD、压汞法、CO2-TPD和O2-TPO对催化剂进行表征。结果表明,KNO3改性的Pt-Sn-K/γ-Al2O3催化异丁烷脱氢反应的转化率和异丁烯收率均高于KCl改性的Pt-Sn-K/γ-Al2O3催化剂,但其异丁烯选择性却略低于后者;随着Pt-Sn-K/γ-Al2O3中K负载量的增加,其催化异丁烷脱氢反应的转化率降低,异丁烯选择性则逐渐增加,异丁烯收率呈现先增加后减小的趋势,合适的K质量分数在0.4%~0.8%范围。Pt-Sn-K/γ-Al2O3催化剂中的Pt、Sn和K处于高度分散状态或者含量很少;钾盐的掺入未对催化剂孔体积和平均孔半径产生大的影响;催化剂表面存在弱碱中心和强碱中心,后者对催化异丁烷脱氢反应更有利。  相似文献   

5.
《天然气化工》2017,(3):12-15
采用小型脱氢装置和微反装置对抚顺石油化工研究院(FRIPP)开发的第二代低碳烷烃脱氢催化剂FPDH-2进行了稳定性和再生性能的考察,采用X射线衍射、场发射透射电镜和NH3程序升温脱附对催化剂进行了表征。结果表明,FPDH-2催化剂拥有较第一代催化剂FPDH-1更低的Pt含量和更高的Pt分散度。在625℃、0.25MPa、空速1000h~(-1)和氢烃比(物质的量比)1:1的条件下,FPDH-2催化剂的丙烷转化率为22%~26%,丙烯选择性为80%~81%;在590℃、0.1MPa、空速1500h-1和氢烃比1:1的条件下,其异丁烷脱氢转化率为38%~45%,异丁烯选择性为91%~95%。催化剂长运转稳定性和重复再生性能良好。  相似文献   

6.
采用浸渍法制备了含NiO质量分数为20%的NiO/(SO2-4)w-Al2O3(w为SO2-4质量分数)催化剂,借助X射线衍射仪、热重分析仪等对催化剂的性能进行了表征,同时考察了催化剂在560℃时的异丁烷脱氢反应性能。结果表明,NiO/Al2O3催化异丁烷脱氢时,异丁烷几乎全部转化为CH4和积炭,目的产物异丁烯收率为零。以硫酸铵改性NiO/Al2O3作为催化剂,不仅能明显改善异丁烷脱氢产物分布,大幅度提高异丁烯的选择性,还能抑制积炭生成;NiO/(SO2-4)32-Al2O3催化异丁烷脱氢反应性能为最佳,在反应7 h时,异丁烷转化率和异丁烯收率可分别达到34.5%,23.8%。  相似文献   

7.
在40 L固定流化床反应装置上开展了不同复合轻烃原料在A型专属催化剂作用下的催化裂解制低碳烯烃反应评价试验,以考察工艺条件对原料转化率、乙烯及丙烯选择性和收率、丙烯/乙烯(摩尔比,下同)、以及副产物混合C4、氢气、甲烷收率的影响。结果表明:以双烯烃总收率为指标,轻烃原料族组成的催化裂解制低碳烯烃性能从高到低排序为:正构烷烃、异构烷烃、环烷烃、芳香烃;在轻烃原料R中添加异辛烷,虽然能显著提高催化裂解时的轻烃原料转化率及产物中的丙烯/乙烯,但产物中的乙烯及丙烯收率、双烯烃总收率均略有降低;含添加10%(质量分数)异辛烷的复合轻烃原料在A型专属催化剂作用下的催化裂解制低碳烯烃较佳反应条件为:液时空速为0.64 h-1,氮气、汽提水流量分别为0.50,1 L/min,反应温度为665℃及反应压力为40 kPa;在此条件下,复合轻烃原料的转化率为80.11%,目标产物中的双烯烃总收率、乙烯及丙烯收率分别为50.03%,43.50%,丙烯/乙烯为0.73。  相似文献   

8.
采用周期操作的丙烷氧化脱氢制丙烯固定床反应装置,使丙烷的氧化和催化剂的氧化在不同的时间进行,利用WxCeOy催化剂体相的晶格氧氧化丙烷,减少深度氧化,提高反应的选择性。考察了W与Ce摩尔比及活性组分负载量对催化剂催化性能的影响,以及丙烷氧化脱氢的反应条件。在反应温度390℃、空速180h-1时,丙烷转化率为6.5%,丙烯选择性为86.5%,表明WxCeOy催化剂对丙烷氧化脱氢制丙烯有较好的低温催化性能。  相似文献   

9.
 采用重油催化裂解多产丙烯专用催化剂R0,考察了燕山FCC汽油C5窄馏分的催化裂解反应特性。由于热裂解反应和催化裂解反应的反应机理不同,对于C5窄馏分,其中的烷烃热裂解反应转化率高于烯烃热裂解反应转化率;而烯烃的催化裂解反应转化率高于烷烃的催化裂解反应转化率,且催化裂解反应的丙烯收率较高。C5窄馏分的催化裂解反应中,C5烯烃转化率随温度变化较小,C5烷烃转化率随温度升高显著增加,且丙烯选择性随温度先增加后降低,表明烯烃更易于生成丙烯;C5烷烃转化率和C5烯烃转化率均随质量空速的增加而降低,且C5烷烃转化率下降更显著;C5烷烃转化率和C5烯烃转化率均随催化剂积炭量的增加而降低,且C5烷烃转化率降低更为显著。当催化剂积炭量达0.44%后,烷烃的催化裂解反应消失,烷烃转化率完全由热裂解反应所控制。  相似文献   

10.
以活性氧化铝为载体,采用等体积浸渍法制得Cr-K_2O/Al_2O_3催化剂前驱体,经过不同温度焙烧制得Cr-K_2O/Al_2O_3-t催化剂。通过BET、XRD和NH3-TPD对催化剂进行表征,在固定床中考察了Cr-K/Al_2O_3-t催化剂催化异丁烷脱氢制异丁烯的性能。结果表明,焙烧温度影响催化剂的异丁烯收率和异丁烯的选择性,500~600℃焙烧的催化剂可获得较多活性中心,高温焙烧的催化剂表面酸性位减少,适宜的焙烧温度为600℃。在常压、500℃、异丁烷体积空速400h~(-1)的反应条件下,Cr-K_2O/Al_2O_3-600催化剂上异丁烯收率和选择性分别达到50.2%和94.9%。  相似文献   

11.
为某中试循环流化床装置中的丙烷脱氢反应器建立了三维多尺度CFD流动-传热-反应耦合模型,并采用该模型对丙烷脱氢反应器的操作工况进行了参数优化研究。所建立的三维多尺度CFD模型能够较准确地刻画丙烷脱氢在整个流化床反应器内的反应历程。通过参数优化研究获得丙烷脱氢反应器的最佳操作条件为:反应温度600 ℃,体积空速2 350 h-1,催化剂装量0.8 kg,催化剂平均粒径70 μm,在此操作工况下,丙烷转化率为43%,丙烯选择性为85%,丙烯收率达37%。所建立的CFD模型能够用于丙烷脱氢流化床反应器的模拟、设计、放大与优化等过程。  相似文献   

12.
采用单孔道模型模拟规整反应器,建立数学模型,利用COMSOL Multiphysics软件对丙烷脱氢制丙烯反应进行了模拟,并与散堆固定床进行了对比,同时考察了规整反应器中工艺条件与催化剂结构对丙烷脱氢反应的影响。模拟结果表明,与传统散堆固定床相比,规整反应器的丙烷初始转化速率更大、转化率更高、丙烯选择性更高、反应器压降更小,最大丙烯收率为0.407 7,反应器压降仅为344 Pa,但失活速率较颗粒催化剂快。采用规整反应器,升高温度有利于丙烷转化率增大。低转化率时,反应温度越高,丙烯选择性越低。压力越大,丙烷转化率越低。相同转化率下,压力越大,丙烯选择性也越低。适宜的催化剂孔壁厚度为0.2 mm。催化剂孔密度对丙烷脱氢反应基本没影响。  相似文献   

13.
介绍了由中国石油大学(北京)自主开发、东营科尔特新材料有限公司生产的SQ401催化剂在山东鲁深发化工有限公司100 kt/a固定床异丁烷脱氢装置的应用和运行情况。结果表明:SQ401催化剂具有较高的异丁烷转化率、异丁烯选择性和脱氢稳定性,异丁烷转化率为16.56%、异丁烯选择性为92.59%、异丁烯收率为15.34%,生产的异丁烯能够满足下游MTBE装置的生产需要;对催化剂的再生过程进行了改进,催化剂再生时间从4天降为2天,有效提高了生产效率。  相似文献   

14.
采用浸渍法制备出Pt-Sn分子筛脱氢催化剂L-78,在固定床反应器上,以烯烃抽提后的混合丁烷为原料,考察了反应温度、原料体积空速、氢烃体积比等工艺条件对该催化剂脱氢性能的影响,并在优选的工艺条件下,考察了催化剂的单程使用寿命.结果表明,在反应温度为540℃,原料体积空速为2.8h-1,氢烃体积比为3.0的优化工艺条件下,脱氢反应进行约40 h时,正丁烷转化率、异丁烷转化率均降至约30%,反应进行55 h时,丁烯选择性小于90%.  相似文献   

15.
以B掺杂Mo-V-Te-Nb-O复合金属氧化物作为催化剂,研究了丙烯一步氧化制备丙烯酸的反应过程。考察了反应温度、丙烯空速、氧烯比以及水蒸气含量等因素对丙烯转化率和丙烯酸选择性的影响。结果表明,掺杂B能显著提高丙烯转化率;升高温度可以显著提高丙烯转化率,但对丙烯酸的选择性不利;高空速时丙烯转化率较低,但液相产物的选择性较高;而氧烯比过高或过低都不利于反应的进行;水含量增加可持续降低丙烯转化率、提高丙烯酸选择性,但对丙烯酸收率影响不大。在反应温度400℃,丙烯空速2.5 mL/(g·min),氧烯比1.5,水/丙烯(摩尔比)为1的条件下,反应具有较高的转化率(83.6%)和选择性(73.1%),丙烯酸收率为61.1%。  相似文献   

16.
<正>中国石油大学(华东)开发的10kt/a新型丙烷/丁烷脱氢工业化示范装置在山东恒源石油化工股份有限公司开车成功。工业化试验结果表明,烷烃的单程转化率、烯烃的收率和选择性与引进技术相当,打破了国外在该领域的技术垄断,填补了国内空白。目前我国的丙烷、异丁烷脱氢技术全部从国外引进,  相似文献   

17.
研究了水热处理和氯化处理氧化铝载体对PtSnK/Al_2O_3催化剂异丁烷脱氢反应的影响,通过低温N_2吸附、XRD、NH_3-TPD、H_2-TPR、CO-TPR等手段考察了水热处理及氯化处理对载体和催化剂试样的孔结构、酸性、晶型和分散度的影响。表征结果显示,氯化处理载体制得的催化剂相比水热处理载体制得的催化剂的异丁烷脱氢活性更好。实验结果表明,水热和氯化处理载体能促进催化剂中活性组分Pt原子的分散,增加脱氢活性位,从而提高异丁烷脱氢反应中异丁烷的转化率,利用氯化处理和水热处理载体制得的催化剂的异丁烷初始转化率分别为61.0%和57.3%,高于未经处理的催化剂的异丁烷初始转化率(51.8%)。载体经处理后增加了催化剂的酸量,造成了异丁烷脱氢反应中异丁烯选择性的降低。  相似文献   

18.
正中国石油大学(华东)开发的年产10 kt/a新型丙烷/丁烷脱氢(ADHO)工业化示范装置在山东恒源石油化工股份有限公司开车成功。工业化试验结果表明,烷烃的单程转化率、烯烃的收率和选择性与引进技术相当。该研究成功开发出无毒无腐蚀性的非贵金属氧化物催化剂,并为之配套开发了高效循环流化床反应器,成功实现脱氢反应、催化剂烧焦再生连续进行。该新型丙烷/丁烷脱氢技术具有以下几个特点:原料不需要预处理即可直  相似文献   

19.
冯静  柯丽  顾伯锷  张明森 《石油化工》2004,33(Z1):1596-1597
研究了在异丁烯部分氧化制甲基丙烯醛的反应中,钼铋铁系催化剂的催化性能随温度、空速的变化规律,结果表明,随着温度的升高,异丁烯转化率不断增加,而甲基丙烯醛选择性和收率都存在最大值;随着空速的提高,选择性、收率都增加,最高收率点呈现有规律的变化.  相似文献   

20.
《石油化工》2015,44(12):1461
以Cr/Al_2O_3为催化剂催化混合丁烷脱氢,采用SEM技术对催化剂进行表征,考察了反应温度和液时空速对混合丁烷脱氢性能的影响,并分析了正丁烷脱氢反应的产物分布。表征结果显示,Cr/Al_2O_3具有较好的球形形态,粒径36~135μm。实验结果表明,Cr/Al_2O_3对混合丁烷脱氢具有较高的催化活性,在反应温度540℃、液时空速2.5 h~(-1)时,100%(w)正丁烷的转化率达30%以上,正丁烯选择性接近80%;在反应温度540℃、液时空速2.5 h~(-1)时,混合丁烷中正丁烷含量(w)为40%~100%时的转化率达30%以上,丁烯选择性达90%以上;在反应温度540~560℃、液时空速2.0~2.5 h~(-1)时,混合丁烷中正丁烷含量低于40%(w)时的转化率为33%~45%,丁烯选择性达90%以上。正丁烷脱氢反应产物中反丁烯的选择性最高,顺丁烯次之,1-丁烯最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号