首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
介绍了几种炼化行业挥发性有机物(VOCs)废气治理典型技术及应用实例。实例:(1)石化污水处理场隔油池、气浮池废气应用"脱硫及总烃浓度均化-催化氧化"技术处理,曝气池废气应用"洗涤-吸附"装置处理;(2)汽油装车油气应用"低温柴油吸收"技术处理,油气回收率大于95%;汽油低温柴油吸收装置净化尾气与喷气燃料装车油气应用"总烃浓度均化-催化氧化"技术处理;(3)中间油品罐和污水池VOCs废气应用"低温柴油吸收-碱液脱硫+总烃浓度均化-催化氧化"技术处理;(4)橡胶废气应用"预处理(冷凝、过滤)-催化氧化"技术处理;(5)氯苯、硝基氯苯装置和原料及产品储罐排放的VOCs废气应用"蓄热燃烧-氢氧化钠碱液吸收-活性炭吸附"技术集中处理。处理后的净化气中甲烷总烃、苯、甲苯及二甲苯等指标均符合国家排放标准。  相似文献   

2.
通过对装车排气达标治理技术对比分析,确定了低温柴油吸收-总烃均化-催化氧化工艺治理山东某石化企业汽油、喷气燃料装车排气。在吸收油流量15~20 m3/h、吸收温度8~15 ℃、吸收压力0.2 MPa、催化氧化反应温度 250~350 ℃及反应空速5 000~20 000 h-1的操作条件下,研究了低温柴油吸收、总烃均化、催化氧化过程对汽油及喷气燃料装车排气治理的效果,净化气中非甲烷总烃排放质量浓度小于20 mg/m3,苯、甲苯、二甲苯排放浓度低于检出限值,满足国家及地方标准排放要求。该装置的投资回收期约为5年,具有一定的经济效益和明显的环保效益。  相似文献   

3.
介绍了炼油厂储罐挥发性有机物和恶臭废气排放概况及几种炼油厂储罐挥发性有机物和恶臭治理新技术,并给出了炼油厂储罐污染物浓度和罐顶废气排放量估算方法。通过加装罐顶气平衡连通管线、罐顶气进集气柜、控制罐内气体温度等技术可以减少罐顶气排放;酸性水、污油、粗汽油、粗柴油等储罐废气经过"低温柴油吸收-碱液脱硫-焚烧"技术处理,油气回收率可达70%~97%,硫化氢和有机硫化物去除率接近100%,焚烧烟气中总烃的质量浓度小于10 mg/m~3;油浆、对二甲苯等储罐废气经过"低温柴油吸收-脱硫均化-催化氧化"技术处理,油气回收率约76%,甲硫醇、硫化氢去除率接近100%,催化氧化净化气非甲烷总烃的质量浓度小于10 mg/m~3,苯、甲苯、二甲苯浓度低于检出限;油浆、沥青等储罐和沥青装车尾气经过"低温柴油吸收-脱硫均化-RTO"技术处理,油气回收率约46%,甲硫醇、硫化氢去除率接近100%,蓄热氧化净化气非甲烷总烃的质量浓度小于10 mg/m3,苯、甲苯、二甲苯浓度低于检出限。  相似文献   

4.
陈小燕 《石化技术》2023,(7):228-229
低温柴油吸收组合技术是现阶段石化行业VOCs治理领域普遍应用且效果较好的技术之一。本文通过对“低温柴油吸收+碱液脱硫+脱硫及总烃浓度均化+催化氧化”组合技术的优化研究,提出了调整废气管路界区手阀开度、降低催化氧化排口净化气氧含量、提高催化氧化单元入口温度及反应温升等优化措施,有效保障VOCs治理装置达标排放,实现装置安全平稳运行。  相似文献   

5.
在分析油品出厂装车期间排气(简称装车排气)性质的基础上,通过对装车排气治理技术对比分析,确定了采用低温柴油吸收-总烃浓度均化-催化氧化工艺治理山东某企业0号柴油、92号汽油、轻石脑油、MTBE的装车排气。在低温柴油吸收的液/气体积比为60~120 L/m3、塔内操作温度为8~14 ℃、操作压力为0.2 MPa,催化氧化反应器入口温度为350~410 ℃、反应体积空速为5 000~20 000 h-1的操作条件下,净化气中非甲烷总烃排放质量浓度小于20 mg/m3,苯排放质量浓度小于0.001 mg/m3,甲苯和二甲苯排放质量浓度均小于0.003 mg/m3,净化气污染物排放浓度满足环保排放标准和A级企业排放指标要求。该废气治理装置可回收的油气量为2 836.1 t/a,具有一定的经济效益和明显的环保效益。  相似文献   

6.
VOCs对人体和区域环境会产生一定危害,石油化工企业的轻质油储罐区是VOCs的主要来源,必须对储罐区油气排放进行治理.文中根据储油罐区VOCs产生的原因进行分析,对比不同的处理方法,结合石油化工企业的特点提出了"低温柴油回收+碱液吸收+催化氧化"的处理方法,对处理装置进行评价,通过数据估算,该装置运行后能够产生良好的经...  相似文献   

7.
石化是我国有机液体储存量最大的行业。有机液体储罐除大、小呼吸产气外,还有高温重油储存热裂解产气现象。现有国内外标准存在以下问题:(1)允许储罐排放的挥发性有机物(VOCs)浓度较高;(2)选用浮顶罐或固定顶罐+罐顶排气处理装置均符合标准,但允许排放的VOCs浓度差别很大。2019年,我国有机液体储存源VOCs排放量为392~904 kt,主要发生在石化行业。要提升我国环境空气质量、减少VOCs排放,储罐深度减排是关键。提出了“储罐VOCs深度减排”判据,将储存柴油的固定顶罐改为内浮顶罐可实现深度减排,现有固定顶罐、浮顶罐增加罐顶气治理可实现深度减排。介绍了中国石油化工股份有限公司大连(抚顺)石油化工研究院开发的以“低温柴油吸收-脱硫及总烃均化-蓄热氧化/催化氧化/热力焚烧炉”为核心的Tg系列储罐废气处理技术及应用实例,以及近年开发的内浮顶罐内置气袋VOCs减排技术。最后提出了储罐VOCs深度减排标准建议。  相似文献   

8.
炼油污水处理场挥发性有机物(VOCs)和恶臭废气可分为高浓度、低浓度两类:高浓度废气来自提升池、均质罐、隔油池、气浮池(浮选池)、污油罐(池)等,非甲烷总烃浓度为500~40 000 mg/m3,总气量为1 000~10 000 m3/h(标准状态);低浓度废气来自曝气池、氧化沟、污泥脱水间,非甲烷总烃浓度为10~300 mg/m3,总气量为20 000~50 000 m3/h(标准状态)。中国石化抚顺石油化工研究院开发了适用于炼油污水处理场高浓度与低浓度废气联合处理的SWAT-1、SWAT-2工艺技术,在SWAT-1工艺中,高浓度废气采用“脱硫及总烃浓度均化-催化燃烧(氧化)”工艺处理,曝气池等低浓度废气采用“洗涤-吸附”工艺处理,低浓度废气饱和吸附剂用催化氧化排放的热气再生并返回催化氧化处理系统;而在SWAT-2工艺中,高浓度废气采用“低温柴油吸收-脱硫及总烃浓度均化-催化氧化”工艺处理。应用SWAT-1、SWAT-2工艺处理污水处理场废气,净化气非甲烷总烃浓度可小于50 mg/m3,最低小于10 mg/m3,苯、甲苯、二甲苯浓度低于检出限,臭气浓度小于20(无量纲)。  相似文献   

9.
对某石化企业储运设施有机挥发物(VOCs)治理工艺进行了优化。采用“碱液脱硫+冷凝+低温柴油吸收+催化氧化”组合技术,该技术可以满足对不同性质的石油化工产品储运设施VOCs的有效治理,并实现VOCs达标排放,为石油化工产品储运设施的环保改造提供了技术保障。  相似文献   

10.
针对石油化工生产过程复杂挥发性有机物(VOCs)废气治理,开发了高效蓄热氧化反应器技术,利用开发的蓄热氧化反应器组合前端吸收及冷凝等废气预处理及浓度调节技术,在石油化工企业罐区、装车以及含油污水池逸散废气、汽油氧化脱硫醇尾气等挥发性有机物废气处理上进行了工业化应用,考察了双床蓄热氧化反应器和三床蓄热氧化反应器废气处理工业化应用效果。结果表明:三床蓄热氧化反应器处理效果明显好于双床蓄热氧化反应器。针对石油化工企业复杂VOCs废气,采用开发的三床蓄热氧化反应器处理后,净化气中非甲烷总烃质量浓度小于10 mg/m3,硫化氢、有机硫化物以及苯、甲苯、二甲苯等污染物浓度均低于检出限,优于国内外最严排放标准要求,实现了VOCs近零排放。  相似文献   

11.
为了满足炼油企业减产柴油、降低柴汽比的产品结构调整需求,中国石化抚顺石油化工研究院开发了FDHC柴油中压加氢裂化技术。该技术采用加氢裂化-补充精制工艺流程,解决了中压加氢裂化喷气燃料馏分烟点偏低和装置运行末期产品质量下降等难题,通过优化原料构成、催化剂体系和操作参数,使之适用于加工直馏柴油原料,灵活增产优质喷气燃料产品、重整原料和蒸汽裂解制乙烯原料。生产的喷气燃料馏分烟点可达28.1 mm,可作为优质3号喷气燃料;未转化柴油馏分BMCI可达9.5,可作为优质的蒸汽裂解制乙烯原料。  相似文献   

12.
经济新常态下,中国主要成品油消费仍呈增长趋势,汽油和煤油刚性需求增长较快,而柴油需求增速大幅减少,市场需求的柴/汽比明显下降。环保压力增大,国Ⅴ柴油标准和国Ⅴ汽油标准相继推出,油品质量升级步伐必须加快。乙烷制乙烯技术的大规模市场化使石脑油蒸汽裂解生产低碳烯烃受到挑战,开发具有竞争力的丙烯生产技术受到关注。面对市场的变化,为更加高效、清洁地利用宝贵的石油资源,为满足市场需求多产汽油和喷气燃料,为提供更具竞争力的丙烯等基本化工原料,炼油研发部门近年来主动积极地开发一系列新的关键技术,包括更高效的固定床渣油加氢技术(RHT)、多产轻质油的催化裂化蜡油选择性加氢与选择性FCC集成技术(IHCC)、第三代催化裂化汽油选择性加氢脱硫技术(RSDS-Ⅲ)、柴油超深度加氢脱硫技术(RTS)、催化柴油加氢裂化生产高辛烷值汽油技术(RLG)、低压喷气燃料加氢RHSS技术、多产化工原料的催化丙烯技术(SHMP)。这些技术或技术组合将对支撑未来炼油工业的发展和应对市场变化发挥重要作用。  相似文献   

13.
介绍了抚顺石油化工研究院(FRIPP)开发的加氢裂化催化剂级配技术。通过不同类型加氢裂化催化剂(C/A-B)级配实验后发现,与单一类型催化剂相比,采用级配装填工艺可以在提供优质、清洁油品的同时,降低装置冷氢用量,生产芳潜较高的重石脑油、高烟点喷气燃料、低凝柴油及BMCI值较低的加氢裂化尾油等,满足炼厂不同时期对石化原料和燃料油的需求。此外,该技术相对提高了反应器出口温度,提高了后续换热器的热源温度,为炼厂节能降耗提供新的途径。  相似文献   

14.
劣质柴油生产清洁柴油技术的比较   总被引:1,自引:0,他引:1  
介绍了抚顺石油化工研究院开发的加氢精制、加氢精制 临氢降凝、最大柴油十六烷值改进 (MCI)、中压加氢改质 (MHUG)等四种工艺技术的特点 ,以及上述工艺应用于劣质柴油生产清洁柴油的结果。以加工鲁宁管输原油为例 ,对四种工艺加工柴油的方案进行了技术经济指标对比。加氢精制与加氢精制 临氢降凝工艺处理后柴油硫含量为 0 .0 4 % ,平均十六烷值 4 5,仅能满足目前的产品质量要求 ;而MCI和MHUG工艺的柴油硫含量为 0 .0 2 % ,平均十六烷值达 50以上 ,尽管投资有所提高 ,但生产灵活性高 ,可满足当前及今后一段时期的清洁产品的要求。  相似文献   

15.
汽油氧化脱硫醇尾气中含有氧气、氮气、水蒸气和油气,油气体积分数为20%~40%。2007年中国石油化工股份有限公司沧州分公司将抚顺石油化工研究院(FRIPP)的冷凝-蓄热燃烧技术成功应用于一套尾气处理量150m~3/h的工业装置上。在0~5℃,尾气中的大部分水蒸气凝结成水;在-60~-70℃,85%~90%油气冷凝成液体;油气体积分数为2%~5%的不凝气用空气稀释到0.2%~0.6%,进入蓄热燃烧装置处理,净化气体符合中国《大气污染物综合排放标准》(GB 16297—1996)和《恶臭污染物排放标准》(GB 14554—93),非甲烷总烃浓度小于120 mg/m~3。  相似文献   

16.
重油催化裂化装置增产柴油的措施   总被引:1,自引:0,他引:1  
为适应市场对柴油的需求,长岭炼油化工总厂通过降低反应温度、降低汽油干点和改变柴油馏程、使用增产柴油的催化剂及调整其它操作参数,柴油收率分别提高了3.87,3.99,3.65和0.85个百分点。并对现有装置提出了调整分馏塔中段塔盘、提高柴油泵扬程及冷却器负荷等改进措施,还对进一步增产柴油提出了优化提升管进料方式和原料结构、缩短反应时间及以最佳操作发挥催化剂作用的设想。  相似文献   

17.
近年来,化工转型及相关核心技术的开发已成为炼油化工行业关注的热点。中国石化石油化工科学研究院基于对石油中烃类结构和反应特性的认识,开发了促进目标反应物定向转化的催化材料制备以及反应环境优化调控的工艺,形成了化工型炼油厂核心技术。其中,重油定向加氢处理 选择性催化裂解集成技术可将重质原料转化为低碳烯烃;增产航煤和优质化工原料的蜡油加氢裂化技术将蜡油馏分转化为航煤的同时还能灵活增产芳烃和烯烃原料。这些技术从组分炼油的角度实现了石油分子的高效利用,为化工转型发展提供了技术支撑。  相似文献   

18.
国内某石化公司1.4 Mt/a喷气燃料加氢装置采用中国石化抚顺石油化工研究院开发的FH-40B催化剂。装置标定结果表明,采用FH-40B催化剂处理直馏喷气燃料(总硫质量分数为0.14%),在反应器入口压力1.75 MPa、反应器入口温度265℃、氢油体积比100、体积空速2.95h-1的条件下,产品的硫醇硫质量分数低于3μg/g,烟点为24.5mm,萘系烃体积分数为0.36%,冰点为-57.2℃,催化剂具有优异的脱硫醇硫性能,并能使喷气燃料产品的烟点稍有提高,所得喷气燃料产品质量满足3号喷气燃料国家标准(GB 6537—2006)的要求。装置运行结果表明,FH-40B催化剂失活速率为0.021℃/d,催化剂床层压力降变化趋势较平缓,催化剂具有良好的活性和稳定性,有利于工业装置的长周期运行。  相似文献   

19.
国内某喷气燃料加氢装置为满足扩能需求,在大检修期间通过增加反应器、更换高活性催化剂、提高加热炉负荷等项目完成装置改造。该装置采用中国石化石油化工科学研究院针对RHSS技术研发的新一代RSS-2催化剂,在较低的反应温度下,可以满足生产3号喷气燃料的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号