首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
研究了蜡油加氢裂化装置掺炼催化裂化柴油(简称催化柴油)对反应性能的影响。掺炼不同馏程催化柴油的研究结果表明:在相同反应条件下,随着催化柴油馏程的增加(馏程低的称为轻催柴,馏程高的称为重催柴),轻石脑油与重石脑油收率逐渐减小,重石脑油芳潜逐渐增大,喷气燃料收率先增大后减小,喷气燃料烟点逐渐降低,大于282 ℃尾油收率先减小后增大,尾油BMCI值逐渐升高;在相同反应条件下,随着轻催柴掺炼比例的增加,喷气燃料和重石脑油产率减小,重石脑油芳潜增大,喷气燃料烟点降低,大于282 ℃尾油的BMCI值逐渐增加;当轻催柴掺炼比例为30%时,尾油BMCI值为13.31,仍可作为优质的蒸汽裂解制乙烯的原料;在相同尾油收率下,随着轻催柴掺炼比例的增加,加氢裂化反应氢耗增加,轻石脑油、重石脑油收率降低,喷气燃料收率增加,重石脑油芳潜增大,喷气燃料烟点降低,尾油BMCI值增加。  相似文献   

2.
介绍了中国石化海南炼油化工有限公司加氢裂化装置掺炼催化裂化柴油运行情况,运行分析显示,加氢裂化装置掺炼一定比例的催化裂化柴油是可行的。在控制相同尾油量的操作方案下,航煤收率小幅增加,柴油收率略有降低,其余馏分收率变化不大,劣质的催化裂化柴油转化成附加值较高的航空煤油、车用柴油和石脑油组分。掺炼对反应部分的操作影响较大,精制反应器总温升增加7℃以上,裂化反应器总温升增加2.7℃以上,总氢耗增加30Nm3.t-1左右,对产品的质量也带来一定变化和影响,综合能耗增加。  相似文献   

3.
蜡油加氢装置加氢处理催化裂化柴油(催柴)和蜡油的混合原料,在催柴掺炼比27.23%、反应温度363 ℃、反应器入口氢分压9.5 MPa、反应器入口氢油体积比493、主剂体积空速1.35 h-1的工艺条件下,催柴密度从0.983 6 g/cm3降至0.918 5 g/cm3,氢质量分数从8.34%提高到10.92%,氮质量分数从633 μg/g降至67 μg/g,单环芳烃质量分数从15.9%升至51.6%,多环芳烃质量分数从77.4%降至18.7%,催柴性质改善显著。加氢后的催柴与精制蜡油一起进催化裂化装置,加氢催柴在催化裂化装置的转化率达48.15%,汽油产率达40.41%。  相似文献   

4.
为评估煤油柴油加氢裂化装置大比例掺炼催化柴油方案的可行性,利用基于Petro-SIM模拟软件所建立的加氢裂化装置全流程模型,从混合进料性质、氢气及循环氢系统负荷、催化剂床层温度分布、产品性质等方面对加工方案进行了整体模拟预测,结果表明随着催化柴油掺炼比例的升高,混合进料硫、氮含量和密度以近似线性规律增加,装置氢气及循环氢系统负荷、催化剂床层温度、温升均大幅增加,主要产品性质仍可满足指标要求。工业实践表明,催化柴油掺炼比例为20%时与掺炼催化柴油前工况相比,精制反应器(R101)和裂化反应器(R102)温度分别升高12. 5℃和8. 5℃,达到361. 3℃和362. 0℃,氢气耗量由65. 2 dam~3/h大幅增加至100. 3 dam~3/h,同时循环氢量由370. 6 dam~3/h增加至474. 0 dam~3/h,满足装置压缩机负荷要求。基于Petro-SIM的全流程模型对反应器平均温度模拟结果最大误差仅0. 44%,氢气、循环氢系统负荷以及产品性质模拟误差基本在5. 0%以内。  相似文献   

5.
对比了中国石化北京燕山分公司2.0 Mt/a加氢裂化装置分别掺炼催化裂化柴油(简称催化柴油)和焦化蜡油对工艺参数、设备、产品以及能耗的影响。结果表明:与掺炼催化柴油相比,装置掺炼焦化蜡油后,加氢精制反应器和加氢裂化反应器的平均温度均有所升高,加氢精制反应器的总温升降低;高压换热器结盐速率加快;相同喷气燃料收率下,总氢耗降低,重石脑油芳烃潜含量降低,喷气燃料、柴油和尾油质量得到改善,综合能耗增加。两种工况下,通过工艺参数的调整,均可得到优质石脑油、喷气燃料、柴油和尾油。  相似文献   

6.
加氢裂化装置掺炼不同二次加工油的研究   总被引:4,自引:0,他引:4  
对比了中国石化北京燕山分公司2.0 Mt/a加氢裂化装置分别掺炼催化裂化柴油(简称催化柴油)和焦化蜡油对工艺参数、设备、产品以及能耗的影响。结果表明:与掺炼催化柴油相比,装置掺炼焦化蜡油后,加氢精制反应器和加氢裂化反应器的平均温度均有所升高,加氢精制反应器的总温升降低;高压换热器结盐速率加快;相同喷气燃料收率下,总氢耗降低,重石脑油芳烃潜含量降低,喷气燃料、柴油和尾油质量得到改善,综合能耗增加。两种工况下,通过工艺参数的调整,均可得到优质石脑油、喷气燃料、柴油和尾油。  相似文献   

7.
利用流程模拟软件Aspen Hysys对辽阳石化公司130×104 t/a加氢裂化掺炼不同量常3线直馏柴油混合原料性质进行模拟,通过对掺炼量为30 t/h实际参数和模拟值对比,得到精制反应器R1101每床层出入口温度实际值和模拟值误差小于2.73%,裂化反应器R1102每层出入口温度实际值和模拟值差值小于2.4%,氢耗相对误差在1.07%,各重组分产品收率误差在3.54%范围之内,总体误差不大,验证了模型的准确性。并对不同掺炼量下加氢反应器工况进行模拟,得到精制和裂化反应器每床层入口和出口温度、温升、反应器平均温度及氢耗量变化情况,可以根据模拟的结果调整反应器,为不同掺炼量下反应系统调整提供依据。  相似文献   

8.
为解决中国石油兰州石化公司90万t/a柴油加氢改质装置开工后出现的原料与热量不足的问题,进行了掺炼催化柴油的工业试验。结果表明:当催化柴油掺炼比(质量分数)为10%,裂化反应器第1~第4床层温升依次为7,8,5,6 ℃时,航空煤油收率与柴油转化率最高。与掺炼前相比,掺炼10%催化柴油后,装置能耗由19.48 kg/t(以标准油计)提高至19.96 kg/t;产物中气相、轻重石脑油与航空煤油收率增加;精制柴油收率下降;重石脑油中环烷烃、芳烃质量分数分别提高了2.11,1.67个百分点;航空煤油冰点降低了10 ℃,烟点降低了8.2 mm;精制柴油的质量得到改善。  相似文献   

9.
某石化公司催化裂化柴油(简称催化柴油)产量大、芳烃含量高、十六烷值低、加工难度大。为解决加氢裂化装置掺炼催化柴油时氢耗大、加工费用高等问题,将催化柴油改至焦化汽柴油加氢装置进行加工,并在不同催化柴油掺炼比例下进行工业试验,对比不同掺炼比例下的原料性质、主要操作参数、产品性质和物料平衡等数据。试验结果表明:焦化汽柴油加氢装置掺炼催化柴油后,柴油产品的密度和多环芳烃含量大幅上升,十六烷值大幅降低;反应平均温度提高幅度较大。在目前生产情况下,控制催化柴油掺炼比例不大于20%比较适宜。  相似文献   

10.
为了拓宽加氢裂化装置的原料来源,中国石化齐鲁分公司1400kt/a加氢裂化装置在加强对原料的过滤,提高加氢精制深度,充分利用高抗氮裂化催化剂性能等现有条件的情况下,进行了提高掺炼焦化蜡油比例的工业试验,掺炼率最大可至25%。当掺炼率为20%时,精制反应器床层的总温升比单炼VGO时上升了20℃,平均反应温度实际上升了6.1℃,氢耗从202.8m^3/t上升到236.5m^3/t。掺炼焦化蜡油后对装置的平稳操作和产品质量、产品分布无不良影响。  相似文献   

11.
加氢裂化装置掺炼辽河原油焦化蜡油技术分析   总被引:1,自引:0,他引:1  
通过分析加氢裂化装置掺炼焦化蜡油的原料性质,发现掺炼后原料(CGO,VGO)的密度、C,不溶物及氮含量高于设计值,而硫含量低于设计值,这样的原料不利于精制和裂化反应.掺炼CGO后主要操作参数方面:精制床层平均温度增加8℃,总温升增加5℃;加氢裂化床层平均温度增加10℃,总温升没有变化;装置C5+液收高于掺炼之前;尾油外甩增加.装置运行方面:高氮低硫原料导致精制反应器和裂化反应器的操作条件出现矛盾;循环氢中氨含量过高对裂化剂活性有强烈的抑制作用,并且热高分气换热器结盐速度明显加快.针对这些问题提出了相对应解决措施:确定合理原料掺炼比例;尽可能避免选择高氮低硫原料;增上装置洗盐技术设施.  相似文献   

12.
中国石化北京燕山分公司(简称燕山分公司)为增产高附加值产品、提升效益,对炼油系统进行了流程协同优化。中压加氢裂化装置掺炼催化裂化柴油,由加氢裂化方案改为加氢改质方案运行,将改质柴油送入三号催化裂化装置(简称三催化装置)的提升管进行回炼;同时,将焦化蜡油改入加氢裂化装置进行加工,而蜡油加氢装置不再加工焦化蜡油以改善催化裂化原料。协同优化后,中压加氢改质装置的柴油产品十六烷值提高7个单位;三催化装置的液化气收率提高1.96百分点,汽油收率增加0.88百分点,总液体收率增加2.28百分点;高压加氢裂化装置喷气燃料产品的密度(20 ℃)降低至806 kg/m3,烟点为23.8 mm,尾油BMCI由11.8降低至10.8;蜡油加氢装置精制蜡油的饱和分质量分数提高4.68百分点,芳香分质量分数降低5.96百分点,氮质量分数降低0.06百分点,使催化裂化原料性质得以改善。通过将中压加氢改质装置的喷气燃料馏分抽出送催化裂化装置回炼,与回炼改质柴油相比,催化裂化汽油的研究法辛烷值(RON)增加1.0个单位,改质柴油十六烷值提高4.8个单位。通过全炼油板块系统性优化,燕山分公司车用柴油产品的十六烷值由53.5降低至51.5,解决了质量过剩问题。  相似文献   

13.
中国石化北京燕山分公司(简称燕山分公司)为增产高附加值产品、提升效益,对炼油系统进行了流程协同优化。中压加氢裂化装置掺炼催化裂化柴油,由加氢裂化方案改为加氢改质方案运行,将改质柴油送入三号催化裂化装置(简称三催化装置)的提升管进行回炼;同时,将焦化蜡油改入加氢裂化装置进行加工,而蜡油加氢装置不再加工焦化蜡油以改善催化裂化原料。协同优化后,中压加氢改质装置的柴油产品十六烷值提高7个单位;三催化装置的液化气收率提高1.96百分点,汽油收率增加0.88百分点,总液体收率增加2.28百分点;高压加氢裂化装置喷气燃料产品的密度(20 ℃)降低至806 kg/m3,烟点为23.8 mm,尾油BMCI由11.8降低至10.8;蜡油加氢装置精制蜡油的饱和分质量分数提高4.68百分点,芳香分质量分数降低5.96百分点,氮质量分数降低0.06百分点,使催化裂化原料性质得以改善。通过将中压加氢改质装置的喷气燃料馏分抽出送催化裂化装置回炼,与回炼改质柴油相比,催化裂化汽油的研究法辛烷值(RON)增加1.0个单位,改质柴油十六烷值提高4.8个单位。通过全炼油板块系统性优化,燕山分公司车用柴油产品的十六烷值由53.5降低至51.5,解决了质量过剩问题。  相似文献   

14.
为了实现节能降耗、优化加工流程的目标,大庆石化公司炼油厂对加氢裂化装置原料进行了调整,掺炼焦化柴油和部分催化轻、重柴油.加氢裂化装置原料变更后,经过操作条件的调整,生产运行平稳,产品分布合理,优化了炼油厂二次加工原料配置,达到节能降耗的目的.  相似文献   

15.
为解决FCC柴油后路问题,中国石油化工股份有限公司茂名分公司对1号加氢裂化装置进行了改造,加工FCC柴油生产高辛烷值汽油。标定结果表明,通过更换催化剂,采用部分循环的操作方式,在一定的氢分压、精制反应平均温度为394℃、裂化反应平均温度为400℃的条件下,可生产辛烷值88的汽油馏分,反应的转化率为40.4%,汽油的收率为26.53%,装置能耗为1 582.97 MJ/t;将精制反应温度降到392℃,裂化反应温度提高到401℃时,汽油馏分的辛烷值可提高到91,反应转化率为39.1%,汽油收率24.42%,装置能耗为1 590.07 MJ/t。同时,对装置运行存在的问题进行了分析,需要通过调整反应系统压力以及循环氢纯度来优化装置的运行。  相似文献   

16.
介绍了中国石油天然气股份有限公司大港石化分公司柴油加氢装置应用CK-2柴油加氢精制催化剂的情况。原料油为93%的焦化柴油、7%的催化裂化柴油的混合油,在反应空速为1.01 h~(-1)、反应器入口温度为317℃、反应器出口温度为375℃、高压分离器压力为6.5 MPa、循环氢纯度平均为89.5%、氢油比为320:1的标定条件下,硫质量分数由0.133 4%降为8μg/g,氮质量分数由1 474μg/g降为144μg/g,柴油加氢精制的脱硫率为99.40%,脱氮率为90.37%,精制柴油十六烷值由51提高到56。完全可以生产超低硫柴油。经过半年运行证明催化剂活性、稳定性好。  相似文献   

17.
上海石油化工股份有限公司3.30 Mt/a加氢装置设计空速高达2.3 h-1,为了满足高空速条件下稳定生产国Ⅳ标准柴油的要求,采用抚顺石油化工研究院开发的S-RASSG级配技术及配套的FHUDS-2/FHUDS-5催化剂组合体系,在装置运转5个月后,自2010年11月至2011年2月间,在体积空速为1.8~2.2 h-1、反应器入口温度318~325℃、出口温度371~378℃等条件下,加工硫质量分数为0.96%~1.26%的直馏柴油掺兑40%催化柴油及焦化汽柴油混合油,连续生产国Ⅳ标准柴油70 d,精制柴油符合国Ⅳ标准柴油质量指标要求。说明S-RASSG级配技术可以在高空速条件下满足加工直馏柴油掺兑40%二次加工油品混合原料油稳定生产符合国Ⅳ标准清洁柴油的要求,体现了S-RASSG技术配套的FHUDS-2/FHUDS-5组合体系具有活性稳定性好和对原料油适应性强的特点,是高空速条件下加工掺兑较高比例二次加工油品混合油生产国Ⅳ排放标准清洁柴油的理想选择。  相似文献   

18.
中国石化上海高桥分公司3.0Mt/a柴油加氢装置为适应生产国Ⅴ排放标准柴油需要,结合公司加氢精制原料分配情况和柴油生产现状进行了装置改造。改造后,装置满负荷(285t/h)生产标定结果表明:以56.14%直馏柴油、35.09%焦化汽柴油及8.77%催化裂化柴油组成的混合原料,在体积空速1.05h~(-1)、高压分离器压力6.51 MPa、氢油体积比540、原反应器(R1101)入口温度315℃、R1101床层平均温度353℃、第二反应器(R1102)入口温度346℃、R1102床层平均温度348℃的操作条件下,精制柴油硫质量分数达到8μg/g以下,十六烷值提高7.7个单位,达到51.9,各项性能指标完全达到国Ⅴ排放标准。  相似文献   

19.
在中国石油玉门油田炼油化工总厂80万t/a催化裂化(FCC)装置上进行了回炼加氢改质柴油的工业应用,考察了回炼前后FCC装置原料性质、工艺参数、物料平衡和产品性质的变化情况。结果表明:回炼加氢改质柴油(掺炼比为5.48%)后,FCC装置的柴油/汽油(质量比,以下简称柴汽比)增加了0.04个单位,但全厂柴汽比下降了0.11个单位;汽油产品中烯烃、芳烃质量分数分别增加了0.39,0.24个百分点,汽油辛烷值增加了0.44个单位,柴油产品密度增大,十六烷值略有下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号