首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 259 毫秒
1.
粒子射流耦合冲击破岩实验   总被引:8,自引:6,他引:2  
为研究高速金属粒子和流体耦合冲击作用下岩石破碎的特性和规律,利用自主研制的粒子射流耦合冲击破岩实验装置,开展了射流速度、粒子直径与破岩效率实验,粒子体积分数与破岩效率实验,射流角度与破岩效率实验和粒子射流破岩与钻压比例关系等实验。研究表明:含有一定动能的高频粒子冲击更有利于提高破岩效率,粒子在钻井液中所占的体积分数直接反映了粒子破岩效果的好坏,实际钻井时可以利用单个粒子的冲击动能和单位岩石面积上受到粒子的冲击频率来确定粒子的掺入比例;研制粒子射流冲击钻头时,可以不采用0°入射角的射流喷嘴,而采用1个入射角为8°和3~4个入射角为20°喷嘴的组合设计,其更有利于提高粒子动能的利用率。  相似文献   

2.
为了解锥形齿在旋转冲击和扭转冲击载荷作用下的破岩过程和破岩效率,采用数值模拟和试验数据验证的方法,研究了2种破岩方式下不同冲击幅值和冲击频率对应的岩石内部应力变化、岩石损伤特征、岩石破碎体积和破碎深度、破岩比功.数值模拟分析结果表明,锥形齿在旋转冲击和扭转冲击破岩过程中均表现为切削齿侵入岩石、岩石损伤贯通裂纹萌生、岩石...  相似文献   

3.
旋转水射流破岩钻孔机理研究   总被引:2,自引:0,他引:2  
基于水射流破岩钻孔过程中影响因素和流固耦合作用的分析,运用连续损伤力学和细观损伤力学理论,建立了适用于水射流破岩全过程的岩石损伤模型。依据所建立的损伤模型,利用非线性动力有限元方法,对旋转水射流破岩钻孔过程的过程进行了模拟,其中岩石损伤场的求解采用解耦的方法。计算结果与试验一致,表明旋转射流具有较强的破岩能力,其原因是旋转射流的质点具有三维速度,破岩时以倾斜冲击为主,易于在岩石表面形成拉伸和剪切破坏,回流的干扰较少。破岩过程首先是形成一环形破碎带,然后沿径向和轴向发展,所形成的破碎坑呈内凸锥状。旋转射流破岩的优势在于破碎面积大、效率高、破岩比能低,因而旋转水射流能够钻出大直径的岩石孔眼。  相似文献   

4.
单粒子冲击破岩实验与数值模拟   总被引:4,自引:2,他引:4  
粒子冲击破岩可提高深井、超深井硬地层的钻井速度。通过破岩实验与数值模拟相结合的方法,以冲击破岩的粒子直径、冲击速度等与岩石破碎体积和粒子最大侵彻深度(岩石破碎坑最大深度)之间的内在规律研究为目的,进行了单粒子冲击破岩室内实验,分析了破碎坑模式。同时,利用有限元软件建立了粒子冲击破岩的物理模型,并对粒子冲击破岩的过程进行了数值模拟。模拟结果与室内实验数据的对比,验证了H-J-C模型选取的正确性,并得到了粒子冲击破岩的最佳直径和初速度值的范围。  相似文献   

5.
通过建立岩石、射流、空气的流固耦合模型,利用任意拉格朗日-欧拉算法(ALE),数值模拟研究了
倾斜水射流冲击下岩石的破坏过程,分析了倾斜射流的破岩机理及影响因素。研究结果表明,倾斜射流破岩的主
要形式为射流冲击所造成的卸载拉伸破坏及射流冲刷所产生的拉伸剪切破坏;随着倾斜射流入射角度的增大,破
岩体积先增大后减小,存在最佳射流入射角范围;破岩体积随喷距的增加而较小。研究结果表明倾斜射流的破岩
能力明显强于垂直射流。  相似文献   

6.
机械-射流破岩耦合特性研究   总被引:1,自引:0,他引:1  
在现代旋转钻井破碎井底岩石中仍是以机械破岩为主,理论与实践证明,射流辅助破岩是提高钻井破岩效率的重要途径,但它们的耦合特性研究极少。文章基于渗流场与应力场的耦合理论分析,进行了机械与射流破岩耦合特性的实验研究。结果表明:射流压力和水楔作用对岩石渗流场、应力场具有重要作用,耦合作用比非耦合作用的破岩效率有较大幅度的提高。在实验条件下,砂岩的耦合作用提高破岩效率40%左右,灰岩的耦合作用提高破岩效率20%左右。  相似文献   

7.
为了准确分析粒子冲击钻井过程中粒子对岩石的冲击作用机理,指导施工参数的优选,需要对粒子冲击破岩的深度进行理论计算。基于动态球形空腔膨胀理论,推导了粒子冲击破岩过程中粒子所受阻力与初始入射速度的关系,结合粒子运动微分方程建立了粒子冲击破岩深度的计算模型,并给出定解条件和求解方法。根据计算实例,对粒子冲击破岩深度与粒子初始入射速度的响应关系和破岩深度与破岩时间的响应关系进行了研究。粒子冲击破岩室内试验结果表明,理论计算结果与试验结果基本吻合,表明该理论模型准确可行,可用于粒子冲击破岩过程的理论分析。研究表明,无因次破岩深度随粒子初始入射速度增大呈线性增加、随破岩时间增长呈对数增加的规律。研究结果可为粒子冲击钻井技术的实际应用提供理论支撑。   相似文献   

8.
粒子射流冲击钻井技术是利用高速金属粒子和流体联合冲击破岩为主,机械破岩为辅的一种破岩工艺,是提高坚硬、高研磨岩层进尺速度的一种有效手段。针对该破岩工艺技术,研制了一套能够模拟粒子射流冲击破岩的室内试验装置。该装置主要由高压泥浆泵、粒子掺入装置、模拟顶驱、模拟井底、水循环系统和安全保障系统组成,能够实现粒子按比例掺入、冲击破岩、粒子回收和破岩过程数据监控等功能;能够完成射流速度、粒子体积、粒子掺入比例、冲击标靶距离和射流角度对破岩效率和破岩效果的试验研究。  相似文献   

9.
利用ANSYS软件流固耦合模型对径向钻孔喷头破岩成孔过程进行分析,将CFD软件的内、外流场分析结果导入结构力学分析软件,对破岩成孔过程进行了精确的数值模拟分析。结果显示:在30L/min的入口条件下,喷头能够产生大于破岩临界速度的高压水射流;前向射流旋转切割岩石,反向射流提供反冲力,从而实现自进式破岩。表明该设计方案用于破岩是有效的,该数值模拟方法在分析高压水射流破岩方面是可行的。  相似文献   

10.
为了更准确地分析粒子射流冲击破岩规律,从而有效指导粒子冲击钻井工艺参数的优选,通过粒子射流冲击破岩正交试验,确定了粒子射流各因素影响破岩效果的重要程度,然后根据单因素粒子射流冲击破岩试验,分析了粒子体积分数、粒子直径、喷射角度等主要因素对破岩效果的影响规律,并优选了粒子冲击参数。试验得出,粒子射流各因素对破岩效果的影响程度由大到小依次为喷射时间、粒子体积分数、粒子直径、喷射角度和喷距,最优粒子体积分数为2.0%,最优粒子直径为1.5 mm,最优喷射角度为15°。研究结果表明,岩石破碎孔眼深度与粒子体积分数和粒子直径均成二次函数关系,与喷射角度成四次函数关系;孔眼体积与粒子体积分数、粒子直径和喷射角度均成三次函数关系。该研究结果可为粒子冲击钻井技术的推广应用提供理论支撑。   相似文献   

11.
为提高硬质地层气动潜孔锤的破岩效率和进尺能力,基于非线性接触动力学理论,运用ABAQUS软件建立了活塞-气动潜孔锤钎头-岩石(花岗岩)仿真模型,采用无反射边界条件,分析了冲击速度和回转速度对钎头冲击反力、侵入深度和破岩比功的影响,进而对工艺参数进行优选。分析结果表明:冲击反力峰值与冲击速度近似呈线性增加,回转速度对钎头冲击反力和钻头侵入岩石深度影响较小;钎头在冲击破岩过程中存在多次反弹,活塞第二次撞击钎头后,钎头侵入岩石深度达到最大;相同条件下,冲击回转钻进破岩速度比仅在钻压作用下回转剪切钻进速度提高3~5倍;破岩比功受冲击速度和回转速度影响较大,随着冲击速度的增加,破岩比功存在一个最优值,当钻压为25 kN时,最优工艺参数组合为冲击速度8 m/s,回转速度20 r/min。研究结果可为现场工程施工提供参考。  相似文献   

12.
为提高PDC钻头钻进水平段时的井底射流辅助破岩能力,开展了叶轮式旋转射流喷嘴的射流特性研究。利用k-ε双方程标准湍流模型,对叶轮式旋转射流流场进行了数值模拟,并采用旋流强度和流量系数评价了射流破岩能力。数值模拟结果表明,叶片扭曲角为115°~140°、直柱段无因次长度为0.6~0.8、收缩角为60°~70°时,流量系数和旋流强度可取得最佳值,射流破岩能力最强。根据不同喷距下的旋转射流破岩试验结果,分析了叶轮式旋转射流喷嘴的破岩特性,结果表明,同压降下叶轮式旋转射流破岩直径是普通直射流的近3倍,且喷距在7~11倍喷嘴出口直径时破岩直径最大。研究结果表明,叶轮式旋转射流喷嘴的破岩能力优于普通直射流喷嘴,且通过优化叶轮式旋转射流喷嘴几何参数可提高其破岩能力,加强井底清岩和辅助破岩效果,提高PDC钻头的破岩效率。   相似文献   

13.
为了考察粒子冲击钻井过程中,粒子流经钻头喷嘴的加速过程和流场分布规律,应用Fluent对粒子进入喷嘴后的流动进行数值模拟研究。运用标准κ-ε双方程模型,对双锥度喷嘴粒子射流流场进行仿真模拟,分析了射流压力、围压、粒子直径和粒子质量浓度等因素对粒子射流流场的影响。结果表明,粒子射流加速主要发生在喷嘴收缩段,在等速核前缘速度达到最大。粒子喷射速度和单位时间内通过喷嘴的粒子动能随射流压力增大而增加;粒子浓度越大,单位时间内通过喷嘴的粒子动能越大,破岩效率升高,但粒子浓度过大会导致其流动性差,反而不利于破岩。因此,粒子浓度对其冲击破岩效率的影响主要取决于破岩过程中哪种因素起主要作用。  相似文献   

14.
高效破岩新方法进展与应用   总被引:1,自引:1,他引:0  
为了提高破岩效率,新型钻井工具和技术不断产生。为此总结和介绍了国内外最新的高效破岩方法及其应用,按高效破岩方式将其分为2类:①利用新型钻井工具提高破岩效率,包括水力脉冲空化射流发生器、新型PDC钻头与井下增压工具;②利用新型钻井技术提高破岩效率,包括控粒子钻井技术和超临界二氧化碳钻井技术。现场应用和试验研究结果表明,这些新型的钻井工具或钻井技术都能显著提高破岩效率,具有很好的应用前景。最后提出高效破岩的合理化建议,以期为我国钻井实现高效破岩提供指导。  相似文献   

15.
高压水射流破岩比能演化机理研究   总被引:1,自引:1,他引:0  
采用非线性动力有限元和岩石动态损伤模型,在对高压水射流破岩过程模拟分析的基础上,进行了射流破岩比能演化机理的研究。研究结果表明,在脉冲射流载荷的衰减阶段,由于岩石卸载的阻力较小,卸载过程中所释放的能量利用较为充分,使得脉冲射流的破岩比能明显小于连续射流;因为旋转射流的每一质点均具有三维速度,易于在岩石表面形成拉伸和剪切破坏,且回流的干扰较少,提高了射流的能量利用率,使得破岩比能也明显低于连续射流,且随着切向速度与轴向速度比值的增大,旋转射流破岩比能逐渐减小。  相似文献   

16.
高压水射流凿岩过程的理论研究   总被引:1,自引:0,他引:1  
基于高压水射流凿岩试验结果、岩石内孔隙流体的运动规律以及水射流凿岩过程中能量分布变化趋势的分析,对高压水射流凿岩过程进行了系统的研究。研究结果表明,在水射流凿岩过程中射流和岩石的相互作用以界面耦合为主,水射流的冲击载荷在岩石内产生的应力波和射流准静态压力的共同作用使得岩石破碎,其中应力波的作用占主导地位。高压水射流凿岩过程可分为两个阶段,初期以应力波作用为主,形成岩石损伤破坏的主体;后期主要是射流的准静态压力使得岩石内已有的微孔隙、微裂纹等损伤继续扩展,并汇聚形成宏观破坏,从而使岩石孔眼的直径扩大。  相似文献   

17.
随着油气资源开发的不断深入,井底围压对高压水射流的影响问题越来越突出.为了对比研究井下围压及地面模拟围压条件下高压水射流破岩性能,通过试验研究了高压水射流在井下真实围压条件与3种地面模拟条件下的破岩能力,并研究了锥形喷嘴、直旋混合喷嘴和空化射流喷嘴的破岩效率.研究结果表明:在650 m深的井底,围压约6.45 MPa,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号