首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High light-extraction (external quantum efficiency ~40%) 465-nm GaN-based vertical light-emitting diodes (LEDs) employing double diffuse surfaces were fabricated. This novel LED structure includes one top transmitted diffuse surface and another diffuse omnidirectional reflector (ODR) on the bottom of a LED chip. The diffusive ODR consists of a roughened p-type GaN layer, an indium-tin-oxide (ITO) low refractive index layer, and an Al layer. The surface of the p-type GaN-layer was naturally roughened while decreasing the growth temperature to 800 degC. After flip-bonding onto a Si substrate by AuSn eutectic metal and laser lift-off processes to remove the sapphire substrate, an anisotropic etching by dilute potassium hydroxide (KOH) was employed on the N-face n-GaN layer to obtain transmitted diffuse surfaces with hexagonal-cone morphology. The double diffused surfaces LEDs show an enhancement of 56% and 236% in light output power compared to single side diffused surface and conventional LEDs, respectively. The devices also show a low leakage current in the order of magnitude of 10 -8 A at -5 V and a calculated external quantum efficiency of about 40%. The high scattering efficiency of double diffused surfaces could be responsible for the enhancement in the device light output power  相似文献   

2.
We report the fabrication of InGaN–GaN power flip-chip (FC) light-emitting diodes (LEDs) with a roughened sapphire backside surface prepared by grinding. It was found that we can increase output power of the FC LED by about 35% by roughening the backside surface of the sapphire substrate. The reliability of the proposed device was also better, as compared to power FC LEDs with a conventional flat sapphire backside surface.   相似文献   

3.
We have developed a simple method to fabricate nanoscale masks by using self-assembly Ni clusters formed through a rapid thermal annealing (RTA) process. The density and dimensions of the Ni nano-masks could be precisely controlled. The nano-masks were successfully applied to GaN-based light-emitting diodes (LEDs) with nano-roughened surface, GaN nanorods, and GaN-based nanorod LEDs to enhance light output power or change structure properties. The GaN-based LED with nano-roughened surface by Ni nano-masks and excimer laser etching has increased 55% light output at 20 mA when compared to that without the nano-roughened process. The GaN nanorods fabricated by the Ni nano-masks and ICP-RIE dry etching showed 3.5 times over the as-grown sample in photoluminescence (PL) intensity. The GaN-based nanorod LEDs assisted by photo-enhanced chemical (PEC) wet oxidation process were also demonstrated. The electroluminescence (EL) intensity of the GaN-based nanorod LED with PEC was about 1.76 times that of the as-grown LED. The fabrication, structure properties, physical features, and the optical and electrical properties of the fabricated devices will be discussed.  相似文献   

4.
A novel flip-chip structure of GaN-sapphire light-emitting diodes (LEDs) was developed to improve the external quantum efficiency, where the sapphire substrate was textured and shaped with beveled sidewalls using a wet etching technique. The forward voltage of the conventional flip-chip and shaped flip-chip GaN LEDs were 2.84 and 2.85 V at 20 mA, respectively. This indicates that the GaN LED was not destroyed during the sapphire wet etching process. It was found that the output power increased from 9.3 to 14.2 mW, corresponding to about 52% increases in the external quantum efficiency. The results agree well with the simulation data that the shaped flip-chip GaN LED can provide better light extraction efficiency than that of the conventional flip-chip sample  相似文献   

5.
The light-output power of GaN-based light-emitting diodes (LEDs) was enhanced by microhole array pattern and roughened $hbox{GaO}_{x}$ film grown on the exposed surface. The $hbox{GaO}_{x}$ film was grown by photoelectrochemical (PEC) oxidation via $hbox{H}_{2}hbox{O}$ and formed a naturally rough oxide surface and $hbox{GaO}_{x}/hbox{GaN}$ interface. Compared with that of conventional broad-area LEDs, the output power of the microhole array LED and the surface-oxidized microhole array LED increased by 1.38 and 1.82 times at 20-mA forward current, respectively. The results show that the microhole array pattern with the roughened surface oxide method could significantly enhance light extraction efficiency and be a candidate for manufacturing high-efficient low-cost GaN-based LEDs.   相似文献   

6.
计算了GaN二维光子晶体的能带结构,并利用常规工艺在国内首次制备出了GaN基二维平板结构的光子晶体蓝光LED。经过器件测试表明,与没有制作光子晶体的器件相比,光子晶体使器件的有效出光效率达到了原来的1.5倍以上。另外,还对感应耦合等离子体刻蚀(ICP)的制备光子晶体LED的刻蚀工艺进行了分析。  相似文献   

7.
Unlike the conventional layer structure of an InGaN-GaN multiple-quantum-well light-emitting diode (LED), an LED with reversed p-type and n-type layer sequence, and an n+/p+ tunnel junction has been investigated. When operated at 20 mA, the output power of the inverted LED is almost twice that of the conventional LED. Since the structures of these two LEDs are alike when analyzed by X-ray diffraction, the improvement in the light intensity could be attributed to the elimination of the absorption/reflection by the transparent conductive layer and/or some quality improvement of p-type GaN in the inverted LED.  相似文献   

8.
In this letter, we will report on a nitride-based light emitting diode with a mesa sidewall roughening process that increases light output power. The fabricated GaN-based light-emitting diode (LED) wafers were first treated through a photoelectrochemical (PEC) process. The Ga/sub 2/O/sub 3/ layers then formed around the GaN : Si n-type mesa sidewalls and the bottoms mesa etching regions. Selective wet oxidation occurred at the mesa sidewall between the p- and the n-type GaN interface. The light output power of the PEC treated LED was seen to increase by about 82% which was caused by a reduced index reflectance of GaN-Ga/sub 2/O/sub 3/-air layers, by a rough Ga/sub 2/O/sub 3/ surface, by a microroughening of the GaN sidewall surface, and by a selective oxidation step profile of the mesa sidewall that increases the light-extraction efficiency from the mesa sidewall direction. Consequently, this wet PEC treated process is suitable for high powered nitride-based LEDs lighting applications.  相似文献   

9.
This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates.The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode,together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer.When operated at 350 mA,the via-TF-LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED).After covering with yellow phosphor that converts some blue photons into yellow light,the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times,as compared with the white TF-LED and the white LS-LED,respectively.The significant LOP improvement of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface.  相似文献   

10.
An n-side-up AlGaInP-based light-emitting diode (LED) with a triangle-like surface morphology was fabricated using the adhesive layer bonding technique, followed by wet etching to roughen the surface. The light output power of the roughened-surface LED was 1.6 times higher than that of a flat-surface LED at an injection current of 20 mA, i.e., a significant improvement attributed to the ability of the roughened surface to not only reduce the internal reflection between the rear mirror system and the semiconductor-air interface, but also to effectively scatter the light outside the LED device.  相似文献   

11.
A thin film consisting of a disordered nanorod network of indium tin oxide (ITO) and conventional ITO films are fabricated on gallium nitride (GaN) based-light emitting diodes (LEDs) by electron beam evaporation. The surface morphologies are observed by scanning electron microscopy (SEM). The disordered nanorod network of ITO is grown in vacuum without oxygen. It can be applied directly on the LED as the current spreading film unlike other nanorods which require growth on a conductive layer. The transmittance, current–voltage characteristic, and the dependence of light output power on current are measured for disordered nanorod network ITO LEDs and conventional ITO LEDs, respectively. The measurement results indicate that the nanorod network provides a significant improvement in the light output power of GaN-based LEDs. The influence of the structure of ITO films on the light output power of GaN-based LEDs is discussed.  相似文献   

12.
Nano-hole patterned sapphire substrates (NHPSSs) were successfully prepared using a low-cost and high-efficiency approach, which is the laser interference lithography (LIL) combined with reactive ion etching (RIE) and inductively coupled plasma (ICP) techniques. Gallium nitride (GaN)-based light emitting diode (LED) structure was grown on NHPSS by metal organic chemical vapor deposition (MOCVD). Photoluminescence (PL) measurement was conducted to compare the luminescence efficiency of the GaN-based LED structure grown on NHPSS (NHPSS-LED) and that on unpatterned sapphire substrates (UPSS-LED). Electroluminescence (EL) measurement shows that the output power of NHPSS-LED is 2.3 times as high as that of UPSS-LED with an injection current of 150 mA. Both PL and EL results imply that NHPSS has an advantage in improving the crystalline quality of GaN epilayer and light extraction efficiency of LEDs at the same time.  相似文献   

13.
A p-side-up GaN-based light-emitting diode (LED) on a silicon substrate was designed and fabricated using a combination of omnidirectional reflector (ODR) and double-side textured surface (both p-GaN and undoped-GaN) structures via surface-roughening, laser lift-off (LLO) and wafer-bonding technologies. The reflectivity of the designed ODR can reach 99.1% at a wavelength of 460 nm. The textured surface of top p-GaN was achieved under low temperature (LT) conditions using metalorganic chemical vapor deposition. It was found that the GaN LED with an extra 200-nm-thick LT p-GaN layer exhibits a 50% enhancement in luminance intensity. The luminance efficiency of double-side roughened silicon–ODR–GaN LED with a small chip size of 250 $mu {hbox {m}} times {hbox {500}}~mu$m can be improved from 23.2% to 28.2% at an injection current of 20 mA. For the case of 1 mm $times$ 1 mm in chip size, the saturation behavior of the light output power is not observed when an injection current increased from 20 to 350 mA, where the luminance efficiency at 20 mA can reach 28.9%, demonstrating an enhancement by 46%, as compared with that of the conventional GaN–sapphire LEDs. These enhanced results can be attributed to higher reflectivity from the ODR and multiple chances of light emitted from the active region to escape, as well as a centralizing effect of light along the vertical direction.   相似文献   

14.
InGaN-based light-emitting diodes (LEDs) were fabricated to have a higher light extraction through the photoelectrochemical (PEC) mesa shaping process. After the PEC selective wet oxidation and wet etching processes, stable and controllable crystallographic etching planes were formed as p-type GaN {} planes and n-type GaN {} planes included at an angle of 27 deg. The ever-present cone-shaped structure of a PEC-treated LED has a larger light scattering area and higher light extraction cones on the mesa sidewall, as analyzed by microphotoluminescence and light output power measurement. This cone-shaped-sidewall LED has a higher light output power and a larger divergence angle compared with a conventional LED measured in an LED chip form.  相似文献   

15.
In this letter, the authors report the fabrication of GaN-based light-emitting diodes (LEDs) with mesh indium-tin-oxide p-contact and nanopillars on patterned sapphire substrate. Using hydrothermal ZnO nanorods as the etching hard mask, the authors successfully formed vertical GaN nanopillars inside the mesh regions and on the mesa-etched regions. It was found that 20-mA forward voltage and reverse leakage currents observed from the proposed LED were only slightly larger than those observed from the conventional LEDs. It was also found that output power of the proposed LED was more than 80% larger than that observed from conventional LED prepared on flat sapphire substrate.  相似文献   

16.
We investigate the light extraction efficiency of a GaN light-emitting diode (LED) by using liquid-phase-deposited ZnO rods at near-room temperature. Zinc nitrate and hexamethylenetetramine were used as the deposition precursors. Compared with the conventional GaN LED, the optical power output of the GaN LED with crystalline ZnO rods on its surface has about 1.6 times enhancement.  相似文献   

17.
In this letter, lateral GaN-based Light Emitting Diodes (LEDs) with a SiO2 current blocking layer (CBL) buried in the indium tin oxide (ITO) film and highly reflective metal materials have been proposed. Compared with the conventional CBL structure which was inserted between ITO film and p-type GaN, simulation results showed that LEDs with a buried CBL in the ITO film effectively facilitated current spreading under the CBL. We demonstrated that buried CBL was beneficial for suppressing current crowding (CC) effect around the edge of CBL and may facilitate higher LED efficiency. Furthermore, experimental results showed that LEDs with the buried structure we proposed showed lower working voltage and higher light output power (LOP) compared with those with conventional CBL structure. These results further confirmed that the buried CBL scheme was effective to reduce current crowding (CC) effect. In addition, highly reflective metal materials of Cr/Al/Pt/Au were employed to reduce light absorption and achieve high light extraction efficiency.  相似文献   

18.
In this letter, a GaN/sapphire light-emitting diode (LED) structure was designed with improved electrostatic discharge (ESD) performance through the use of a shunt GaN ESD diode connected in inverse-parallel to the GaN LED. Thus, electrostatic charge can be discharged from the GaN LED through the shunt diode. We found that the ESD withstanding capability of GaN/sapphire LEDs incorporating this ESD-protection feature could be increased from several hundreds up to 3500 V in the human body model. Furthermore, flip-chip (FC) technology was also used to produce ESD-protected LEDs to further improve light output power and reliability. At a 20-mA current injection, the output power of the FC LEDs showed an improvement of around 60%. After a 1200-h aging test, the luminous intensities of the FC LEDs featuring an internal ESD-protection diode decreased by 4%. This decay percentage was far less than those of non-FC LEDs  相似文献   

19.
GaN-based light-emitting diodes (LEDs) with naturally textured surfaces grown by MOCVD were demonstrated. In this study, a growth-interruption step and a surface treatment using biscyclopentadienyl magnesium (CP/sub 2/Mg) were simultaneously performed to form a plurality of nuclei sites on the surface of a p-type cladding layer, and then a p-type contact layer was grown on the p-type cladding layer, so as to create a p-type contact layer with a rough surface having truncated pyramids. Experimental results indicated that GaN-based LED with the truncated pyramids on the surface exhibited an enhancement in output power of 66% at 20 mA. It is worth noting that the typical 20-mA-driven forward voltage is only slightly higher than those of conventional LEDs (without the Mg-treatment process).  相似文献   

20.
研究了一种利用金属自组装纳米掩膜和ICP刻蚀对AlGaInP基发光二极管(LED)表面进行粗化的技术,使光输出得到了提高.粗化了的AlGaInP基LED比常规的AlGaInP基LED,光强提高了27%,光功率提高了12.6%,实验结果具有可重复性.可以进一步优化Au颗粒的周期和分散程度,提高AlGaInP基LED的提取效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号