首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural design of stainless steel concrete filled columns   总被引:1,自引:0,他引:1  
This paper presents the behaviour and design of axially loaded concrete filled stainless steel circular and square hollow sections. The experimental investigation was conducted using different concrete cube strengths varied from 30 to 100 MPa. The column strengths and load-axial shortening curves were evaluated. The study is limited to cross-section capacity and has not been validated at member level. Comparisons of the tests results together with other available results from the literature have been made with existing design methods for composite carbon steel sections — Eurocode 4 and ACI. It was found that existing design guidance for carbon steel may generally be safely applied to concrete filled stainless steel tubes, though it tends to be over-conservative. A continuous strength method is proposed and it is found to provide the most accurate and consistent prediction of the axial capacity of the composite concrete filled stainless steel hollow sections due largely to the more precise assessment of the contribution of the stainless steel tube to the composite resistance.  相似文献   

2.
Zhong Tao  Lin-Hai Han  Dong-Ye Wang 《Thin》2008,46(10):1113-1128
It is generally expected that inner-welded longitudinal stiffeners can be used to improve the structural performance of thin-walled hollow steel structural stub columns filled with concrete. Thirty-six specimens, including 30 stiffened stub columns and six unstiffened ones, were tested to investigate the improvement of ductile behaviour of such stiffened composite stub columns with various methods. The involved methods include increasing stiffener height, increasing stiffener number on each tube face, using saw-shaped stiffeners, welding binding or anchor bars on stiffeners, and adding steel fibres to concrete. It has been found that adding steel fibres to concrete is the most effective method in enhancing the ductility capacity, while the construction cost and difficulty will not be increased significantly.  相似文献   

3.
The ultimate strength and ductility of high strength thin-walled concrete-filled steel tubular (CFST) beam-columns with local buckling effects, are investigated in this paper, using a performance-based analysis (PBA) technique. The PBA technique accounts for the effects of geometric imperfections, residual stresses, strain hardening, local buckling and concrete confinement on the behavior of high strength thin-walled CFST beam-columns. The accuracy of the PBA technique is further examined by comparisons with experimental results. The PBA program is employed to study the effects of depth-to-thickness ratio, concrete compressive strengths, steel yield strengths and axial load levels on the stiffness, strength and ductility of high strength thin-walled CFST beam-columns under combined axial load and biaxial bending. The results obtained indicate that increasing the depth-to-thickness ratio and axial load levels significantly reduces the stiffness, strength and ductility of CFST beam-columns. Increasing concrete compressive strengths increases the stiffness and strength, but reduces the axial ductility and section performance of CFST beam-columns. Moreover, the steel yield strength has a significant effect on the section and strength performance of CFST beam-columns but does not have a significant effect on their axial and curvature ductility.  相似文献   

4.
Fire resistance of axially loaded concrete filled steel tube columns   总被引:2,自引:0,他引:2  
The behaviour of axially loaded square and circular concrete-filled steel tube (CFST) columns when exposed to elevated temperatures is investigated in this paper. The fire resistance of this kind of composite tubes is calculated. Comparison of the square and circular columns in the fire resistance shows that, for columns with the same steel and concrete cross-section areas, the circular column has slightly better fire resistance than the square column.  相似文献   

5.
This paper presents the experimental results for a series of H steel columns under fire load. The width-to-thickness ratio of steel plates and the slenderness ratios of steel columns are two dominating factors linked to local buckling and global buckling of columns, respectively. To evaluate the influence of these two factors on the structural behavior of steel columns in fire conditions, a series of H steel columns were loaded to their limit states at specified temperature levels. The steady state method has been adopted in order to derive the structural behavior of steel columns at specified temperatures directly.On the basis of the experimental results, it has been found that steel columns with non-compact section are able to reach yield strength at elevated temperature. That is, the width-to-thickness ratio, designed in accordance with current ambient temperature specifications, is capable of preventing brittle failure of steel columns in fire conditions. Depending on the slenderness ratio, the failure of steel columns may change from global buckling at ambient temperature to local buckling at elevated temperature. For plastic section columns with a slenderness ratio greater than 50, column strength drops dramatically to 40% of its strength at ambient temperature. At temperature levels of 500 °C, the column retains more than 70% of its ambient temperature strength if the slenderness ratio of the column is less than 50. However, in the case of temperature levels exceeding 500 °C, or when the slenderness ratio is greater than 50, column strength drops significantly. On the basis of this study, it is tentatively suggested that 500 °C be adopted as the critical temperature for steel members subjected to compression in order to ensure that the column strength keeps higher than 2/3 of the ambient temperature yield strength. The slenderness ratio of steel columns should be limited to 50, so as to prevent brittle failure of steel columns under fire attack.  相似文献   

6.
Fire behaviour of concrete filled elliptical steel columns   总被引:1,自引:0,他引:1  
In this work, a non-linear three-dimensional finite element model is presented in order to study the behaviour of axially loaded concrete filled elliptical hollow section (CFEHS) columns exposed to fire. This study builds on previous work carried out by the authors on concrete filled circular hollow section (CFCHS) columns both at room temperature and in fire. The numerical model is first validated at room temperature against a series of experiments on CFEHS stub columns available in the literature and subsequently extended to study the performance of slender columns at elevated temperatures. The aim of this work is to understand and represent the behaviour of axially loaded CFEHS columns in fire situations and to compare their effectiveness with that of the circular concrete filled tubular (CFT) columns. Parametric studies to explore the influence of variation in global member slenderness, load level, cross-section slenderness and section size are presented. Finally, guidance on the fire design of CFEHS columns is proposed: it is recommended to follow the guidelines of Clause 4.3.5.1 in EN 1994-1-2, but employing the flexural stiffness reduction coefficients established in the French National Annex with an equivalent EHS diameter equal to P/π, where P is the perimeter of the ellipse.  相似文献   

7.
High strength concrete filled steel tube (HSCFT) members have found wide applications. However, there are few reports on the test and model of their creep. This paper investigates the creep of axially loaded HSCFT columns by testing eight specimens for 380 day. A creep model, considering the state of triaxial stress and autogenous shrinkage of the high strength concrete core, has been proposed and validated against the test data. Parametric analysis demonstrates that there exists an obvious difference in the creep between HSCFT columns and normal strength concrete filled steel tube columns, additionally, concrete composition influences the creep of HSCFT columns considerably.  相似文献   

8.
This paper describes a series of tests on steel tubular columns of circular and square section filled with normal concrete and recycled aggregate concrete. Thirty specimens, including 24 recycled aggregate concrete filled steel tubular (RACFST) columns and 6 normal concrete filled steel tubular (CFST) columns, were tested to investigate the influence of variations in the tube shape, circular or square, concrete type, normal concrete and recycled aggregate concrete, and load eccentricity ratio, from 0 to 0.53 on the performance of such composite columns. The test results show that both types of filled columns failed due to overall buckling. Comparisons are made with predicted ultimate strengths of RACFST columns using the existing codes, such as ACI 318-1999, AIJ-1997, AISC-LRFD-1999, BS5400-1979, DBJ13-51-2003 and EC4-1994. A theoretical model for normal CFST columns is adopted in this paper for RACFST columns. The predicted load versus deformation relationships are in good agreement with test results.  相似文献   

9.
This paper presents the behaviour and design of axially loaded concrete-filled steel tube circular stub columns. The study was conducted over a wide range of concrete cube strengths ranging from 30 to 110 MPa. The external diameter of the steel tube-to-plate thickness (D/t) ratio ranged from 15 to 80 covering compact steel tube sections. An accurate finite element model was developed to carry out the analysis. Accurate nonlinear material models for confined concrete and steel tubes were used. The column strengths and load-axial shortening curves were evaluated. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to investigate the effects of different concrete strengths and cross-section geometries on the strength and behaviour of concrete-filled compact steel tube circular stub columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American, Australian and European specifications. Based on the results of the parametric study, it is found that the design strengths given by the American Specifications and Australian Standards are conservative, while those of the European Code are generally unconservative. Reliability analysis was performed to evaluate the current composite column design rules.  相似文献   

10.
Jeom Kee Paik  Bong Ju Kim 《Thin》2008,46(5):541-550
Box columns are often used as main strength members of various types of thin-walled structures such as ships, ship-shaped offshore structures, and aerospace structures. Until and after the ultimate limit state is reached, box columns exhibit highly nonlinear structural behavior in terms of geometrical and material aspects. In particular, the effects of local buckling, global buckling, and their interaction play a significant role in the resulting consequences of box columns under extreme actions. In order to calculate the maximum load-carrying capacity of box columns, it is thus highly required to perform the progressive collapse analysis to take into account progressive failures of individual components and their interacting effects. The aim of the present study is to demonstrate a method that is useful for the progressive collapse analysis of thin-walled box columns in terms of computational efficiency and accuracy. Theoretical outline of the method is addressed. Short, medium and long box columns in length are studied in terms of interacting effects between local component failure modes and global system failure modes. The effect of unloaded edge conditions of individual plate elements is also studied. A comparison of the method with more refined nonlinear finite element method computations is made.  相似文献   

11.
A finite element analysis (FEA) model was developed to predict the load versus deformation relationships of concrete filled steel tube (CFST) stub columns subjected to a combination of temperature and axial compression. This model was used to simulate a set of CFST stub column experiments under various thermal and mechanical loading conditions, including tests at high temperature, tests on the residual strength of specimens subjected to uniform heating, and tests on specimens exposed to the ISO-834 standard fire without initial loads. Comparisons between the predicted results and the test results show that this model can predict the load versus deformation relationships with reasonable accuracy. The FEA model was then used to investigate the behaviour of CFST stub columns in a complete loading history including initial loading, heating and cooling by examing the cross-sectional stress distribution and confinement stress development at different loading phases. All specimens were loaded to ultimate strength after cooling and the residual stress index was studied with respect to a group of parameters. It can be found that the ultimate strength when considering the mutual actions of temperature and loading was slightly lower than that after exposure to fire without initial load, but the peak strain corresponding to the ultimate strength was increased significantly.  相似文献   

12.
Lin-Hai Han  Wei Liu  You-Fu Yang 《Thin》2008,46(2):155-164
The behavior of thin walled steel tube confined concrete (STCC) stub columns subjected to axial local compression was experimentally investigated in this paper. A total of 46 specimens, including 36 STCC specimens and 10 plain concrete specimens, were tested. The main parameters varied in the tests are: (1) sectional types: circular and square; (2) local compression area ratio (concrete cross-sectional area to local compression area): from 1 to 25; (3) steel tube width (or diameter)-to-wall thickness ratio, B(or D)/t, from 52.1 to 104.7. It was found that the ultimate bearing strength of the composite sections decreases with increase local compression area ratio. The confinement action of the steel tube to core concrete and the ultimate strength of the locally loaded STCC specimens decrease with increase in steel tube width (or diameter)-to-thickness ratio. It was also found that, generally, circular steel tubes have higher confinement to their concrete core than those of the tubes with square sections when the composite members are subjected to axially local compression.  相似文献   

13.
The mechanics of the compressional behaviour of stub columns fabricated from Grade 350 steel plates welded to very high strength (VHS) circular tubes are investigated in this paper. In the investigations comparisons of experimental load-axial shortening curves are made with the results of a postulated design analysis set up to examine the complete load-shortening behaviour of such members. Ramberg-Osgood type stress–strain equations are set up for the plate and tube materials. A procedure is described to evaluate the loads in individual plate and tube elements as the axial shortening is increased until the 0.2% proof strain for the VHS tube material is attained. Upon reaching this strain it is assumed that failure ensues as the result of a simple plastic mechanism occurring in the tubes. Comparisons of the load-axial shortening curves given by this analysis and experimental results indicate good agreement.  相似文献   

14.
This paper presents a non-linear finite element model (FEM) used to predict the behaviour of slender concrete filled steel tubular (CFST) columns with elliptical hollow sections subjected to axial compression. The accuracy of the FEM was validated by comparing the numerical prediction against experimental observation of eighteen elliptical CFST columns which carefully chosen to represent typical sectional sizes and member slenderness. The adaptability to apply the current design rules provided in Eurocode 4 for circular and rectangular CFST columns to elliptical CFST columns were discussed. A parametric study is carried out with various section sizes, lengths and concrete strength in order to cover a wider range of member cross-sections and slenderness which is currently used in practices to examine the important structural behaviour and design parameters, such as column imperfection, non-dimension slenderness and buckling reduction factor, etc. It is concluded that the design rules given in Eurocode 4 for circular and rectangular CFST columns may be adopted to calculate the axial buckling load of elliptical CFST columns although using the imperfection of length/300 specified in the Eurocode 4 might be over-conservative for elliptical CFST columns with lower non-dimensional slenderness.  相似文献   

15.
Ehab Ellobody   《Thin》2007,45(3):259-273
This paper investigates the nonlinear behavior of concrete-filled high strength stainless steel stiffened slender square and rectangular hollow section columns. The stiffened slender tubes had overall depth-to-plate thickness (D/t) ratios ranging 60–160. The concrete strengths covered normal and high-strength concrete. The investigation focused on short axially loaded columns. A nonlinear finite element (FE) model has been developed to study the behavior of the concrete-filled stiffened tube columns. A parametric study was conducted to investigate the effects of cross-section geometry and concrete strength on the behavior and strength of the columns. The results of the concrete-filled stiffened tube columns were compared with the results of the companion concrete-filled unstiffened tube columns. It is shown that the concrete-filled stiffened slender tube columns offer a considerable increase in the column strength and ductility than the concrete-filled unstiffened slender tube columns. The column strengths obtained from the FE analysis were compared with the design strengths calculated using the American specifications and Australian/New Zealand standards. A design equation was proposed for concrete-filled stainless steel stiffened slender tube columns. It is shown that the proposed modified equation provides more accurate design strengths compared to the American and Australian/New Zealand predictions.  相似文献   

16.
This paper reports an investigation into the behaviour of high strength SCC (self-consolidating concrete) filled steel tubular stub columns exposed to standard fire. A series of tests were carried out to obtain the temperature distribution, axial deformation, limiting temperature of steel and fire endurance of the SCC filled steel tubular stub columns. In addition, a finite element analysis (FEA) model was proposed and used to simulate the fire behaviour of the columns. In the FEA modeling, a sensitivity study was conducted to determine the concrete fracture energy and the contact property of the steel and concrete interface. The verified FEA model was used to analyse the structural behaviour of the columns under fire exposure, such as strain, stress, the load sharing between the steel tube and concrete and local buckling of the steel tube, to gain an insight into the failure mechanism of the columns.  相似文献   

17.
This paper investigates the occurrence of local buckling in bare steel and concrete-filled tubes to study how different depth-to-thickness ratios affect the response of the steel component. The experimental set-up and results of 24 tests are presented in this paper. Specimens with values of depth-to-thickness ratios in the range of 50–125 have been considered. The presence of the concrete has been observed to affect the exhibited buckling mode and to significantly increase the buckling bearing capacity of the concrete-filled steel tubes. A numerical model has been developed using the commercial software ABAQUS and has been validated against the experimental results of this study. From a design viewpoint, it has been observed that local buckling needs to be included in the calculation of the contribution of the steel component to the bearing capacity of a concrete-filled tube when its depth-to-thickness ratio is over 50. For a slender plate, i.e., with a depth-to-thickness ratio over 120, its post-buckling behavior could be included in the calculation of the steel contribution as it evidently increases its bearing capacity. Finally, an equation for the calculation of the bearing capacity of composite sections with both stocky and slender steel elements has been proposed and validated against extensive experimental results available in the literature.  相似文献   

18.
Local buckling of steel plates reduces the ultimate loads of concrete-filled thin-walled steel box columns under axial compression. The effects of local buckling have not been considered in advanced analysis methods that lead to the overestimates of the ultimate loads of composite columns and frames. This paper presents a nonlinear fiber element analysis method for predicting the ultimate strengths and behavior of short concrete-filled thin-walled steel box columns with local buckling effects. The fiber element method considers nonlinear constitutive models for confined concrete and structural steel. Effective width formulas for steel plates with geometric imperfections and residual stresses are incorporated in the fiber element analysis program to account for local buckling effects. The progressive local and post-local buckling is simulated by gradually redistributing the normal stresses within the steel plates. Two performance indices are proposed for evaluating the section and ductility performance of concrete-filled steel box columns. The computational technique developed is used to investigate the effects of the width-to-thickness ratios and concrete compressive strengths on the ultimate strength and ductility of concrete-filled steel box columns. It is demonstrated that the nonlinear fiber element method developed predicts well the ultimate loads and behavior of concrete-filled thin-walled steel box columns and can be implemented in advanced analysis programs for the nonlinear analysis of composite frames.  相似文献   

19.
The stability resistance of steel columns and beams is still a relevant research task in the structural engineering field. One of the main goals of these ongoing works is the improvement of the standard design process, making it more and more sophisticated and providing a better modelling of the real behaviour. However the research should provide, in parallel, a better understanding of the probabilistic side of design problems to make its safety level more uniform. This paper presents a deep look into the probabilistic stability resistance of steel columns and beams with hot-rolled I profiles. A wide range of random variables is considered, higher-level statistics are taken into account, and a special probabilistic model is applied to achieve refined and coherent results based on the most current statistical data. The results are applicable for reliability examinations of standard design processes.  相似文献   

20.
Compression buckling tests were performed on four full-scale W-shaped column specimens to investigate the buckling response of columns in multi-storey braced steel frame structures subjected to seismic strong ground motions. The test protocols included monotonically and cyclically applied concentric and eccentric axial loading. One test was conducted under dynamic cyclic loading. End moments were applied on one cyclic test. The columns were W310×129 compact (class 1) sections made with ASTM A992 steel. Weak axis buckling was studied and the column had an effective slenderness ratio of 48. The response of the test columns was also examined using numerical simulations based on fibre discretization of the member cross-section. Column residual stresses and strain rate effects on the material properties were both characterized and accounted for in the numerical models. The study showed that steel columns can sustain several cycles of inelastic buckling under seismic induced loading while maintaining sufficient compressive resistance to support the applied gravity loads. Residual stresses affected the column response only at the first buckling occurrence with a gradual reduction of the columns’ tangent stiffness prior to buckling as well as a reduction of the column’s compressive resistance. High strain rates anticipated during strong earthquakes increased the column buckling and post-buckling strengths. The cyclic buckling response of steel columns can be predicted adequately when using nonlinear beam-column elements and cross-section fibre discretization provided that residual stresses and strain rate effects are included in the modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号