首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the OMVPE growth of modulation doped p-type Al0.43Ga0.57As(Be)/GaAs heterojunctions which exhibit a two-dimensional hole gas (2DHG). Hole mobilities de-termined by Hall or cyclotron resonance measurements at 300, 77, and 4 K were 394, 3750, and 21200 cm2/V bs s respectively for a sheet carrier density of about 4.5 × 1011 cms−2. Beryllium doping of AlxGa1−xAs using diethylberyllium is characterized by Hall measurements, secondary ion mass spectrometry, and photoluminescence. The depen-dence of free carrier concentrationvs AlAs% forp + layers of AlxGa1−xAsx,x = 0–0.5, is determined. A free carrier concentration greater than 1 × 1018 cms−3 is achieved forx = 0–0.43 with no carrier freeze-out down to 77 K.  相似文献   

2.
We have compared the effects of Mg-doped GaN and In0.04Ga0.96N layers on the electrical and electroluminescence (EL) properties of the green light emitting diodes (LEDs). To investigate the effects of different p-layers on the LED performance, the diode active region structures were kept identical. For LEDs with p-InGaN layers, the p-In0.04Ga0.96N/GaN polarization-related EL peak was dominant at low current levels, while the multiple-quantum-well (MQW) peak became dominant at higher current levels, different from LEDs with p-GaN layers. Also, LEDs with p-InGaN exhibited slightly higher turn on voltages (V on ) and forward voltages (V f ) compared to LEDs with p-GaN layers. However, the MQW related EL intensity was much higher and diode series resistance lower for LEDs with p-InGaN layers compared with LEDs with p-GaN, showing possible improvements in output power for LEDs with p-InGaN layers. The diodes with p-GaN layers typically showed V f of ∼3.1 V at a drive current of 20 mA, with a series resistance of ∼24.7 Ω, while diodes with p-InGaN showed V f of ∼3.2 V, with a series resistance of ∼18.5 Ω, for device dimensions of 230 μm by 230 μm.  相似文献   

3.
It has been demonstrated that a highly doped (Si:3 × 1019 cm-3) triple capping layer consisting of n+−In0.53Ga0.47As, n+−In0.52Al0.48As, and n+-In0.53Ga0.47As can remarkably reduce the parasitic source resistance in InP-based high electron mobility transistors (HEMTs). The analysis of the source resistance revealed that the resistance element at the n+−In0.53Ga0.47As/un−In0.52Al0.48As/un-In0.53Ga0.47As channel heterointerfaces was as large as 70% of the source resis-tance when nonalloyed ohmic electrodes were used. The highly doped triple capping layer reduces the resistance contribution of vertical conduction between the capping layer and 2DEG channel. A low source resistance of 0.57 Ωmm and a low contact resistivity of 3 × 10−5 Ωcm2 were obtained for the HEMTs with the highly doped triple capping layer, which were 60% lower and one order of magnitude smaller than those for the HEMTs with a conventional single capping layer doped 5 × 1018 cm−3, respectively. These values were also 70 and 30% lower than those for the HEMTs with a highly doped (3 × 1019 cm−3) single capping layer, respectively. The low source resistance brings high peak extrinsic transconduc-tance of 1 S/mm for a device with 0.4 μm long gate, which was 42% higher than the previously reported HEMTs with the same gate length.  相似文献   

4.
We have studied the effect of Se-doping on deep impurities in AlxGa1−xAs (x = 0.2∼0.3) grown by metalorganic chemical vapor deposition (MOCVD). Deep impurities in various Se-doped AlxGa1−xAs layers grown on GaAs substrates were measured by deep level transient spectroscopy and secondary ion mass spectroscopy. We have found that the commonly observed oxygen contamination-related deep levels at Ec-0.53 and 0.70 eV and germanium-related level at Ec-0.30 eV in MOCVD grown AlxGa1−xAs can be effectively eliminated by Se-doping. In addition, a deep hole level located at Ey + 0.65 eV was found for the first time in Se-doped AlxGa1-xAs when Se ≥2 × 1017 cm−3 or x ≥ 0.25. The concentration of this hole trap increases with increasing Se doping level and Al composition. Under optimized Se-doping conditions, an extremely low deep level density (Nt less than 5 × 1012 cm−3, detection limit) Al0.22Ga0.78As layer was achieved. A p-type Al0.2Ga0.8As layer with a low deep level density was also obtained by a (Zn, Se) codoping technique.  相似文献   

5.
Optoelectronic devices require materials which exhibit extremely low trap concentrations. The AlxGa1−xAs system has been used extensively for optoelectronic applications despite trap concentrations in the AlxGa1−xAs which limit the efficiency of the resulting devices. Deep level transient spectroscopy (DLTS) performed on Al0.2Ga0.8As layers grown by organometallic vapor phase epitaxy (OMVPE) has revealed three traps with concentrations >1013 cm−3 -E c-Et = 0.3, 0.5 and 0.7 eV. The dominant source of the 0.3 eV trap has proven to be a Ge impurity in arsine. SIMS analysis of Al0.2Ga0.8As samples show Ge as the only candidate for the impurity responsible for the 0.3 eV trap. DLTS and SIMS analysis performed on Al0.2Ga0.8As samples intentionally doped with Ge displayed a proportional increase in the 0.3 eV trap concentration with the Ge concentration and establishes that Ge is indeed the source of the 0.3 eV trap in AlxGa1−xAs. Comparison of C-V, SIMS and DLTS measurements performed on AlxGa1-xAs:Ge indicate that approximately 30% of elemental Ge incorporated created the 0.3 eV trap, DXGe.  相似文献   

6.
Heterostructures for InAs-channel high-electron-mobility transistors (HEMTs) were investigated. Reactive AlSb buffer and barrier layers were replaced by more stable Al0.7Ga0.3Sb and In0.2Al0.8Sb alloys. The distance between the gate and the channel was reduced to 7–13 nm to allow good aspect ratios for very short gate lengths. In addition, n+-InAs caps were successfully deposited on the In0.2Al0.8Sb upper barrier allowing for low sheet resistance with relatively low sheet carrier density in the channel. These advances are expected to result in InAs-channel HEMTs with enhanced microwave performance and better reliability.  相似文献   

7.
A two-level model of intervalley electron transfer in a variband semiconductor is used to study the operation of a Gunn diode based on variband In x(z)Ga1 − x(z)As with n +-n cathodes and n +-n -n cathodes for different lengths of the active region and different thicknesses of the variband layer. It is demonstrated that the critical frequency of a GaAs-In0.4Ga0.6As diode (280–290 GHz) is higher than the critical generation frequencies of GaAs, In0.4Ga0.6As, and In0.2Ga0.8As diodes. Original Russian Text ? I.P. Storozhenko, 2007, published in Radiotekhnika i Elektronika, 2007, Vol. 52, No. 10, pp. 1253–1259.  相似文献   

8.
The effects of lattice mismatch on the deep traps and interface depletion have been studied for the Ga0.92In0.08As(p+)/GaAs(N) and Ga0.92In0.08As(n)/GaAs(SI) heterostructures grown by molecular beam epitaxy. We have used deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) and observed two hole traps, one at an energy ranging from 0.1 to 0.4 eV and the other at 0.64 eV, and two electron traps at 0.49 and 0.83 eV in the GalnAs/GaAsp +-N junction sample. The hole trap appeared as a broad peak in the DLTS data and its energy distribution (0.1 ∼ 0.4 eV) was obtained by a simulation fitting of the peak. Concentration of this distributed hole trap increased as the in-plane mismatch increased, suggesting its relation to defects induced by lattice relaxation, whereas the other traps are from the bulk. The misfit dislocations are believed to be responsible for the interface trap. For the Ga0.92In0.08As(n)/GaAs(SI) samples, Hall effect measurements showed an increased interface depletion width of about 0.14 Μm for the 0.5 Μm thick layer and about 0.12 /gmm for the 0.25 Μm thick layer, while a corresponding GaAs/GaAs sample had only 0.088 Μm for the interface depletion width.  相似文献   

9.
High hole concentrations in LP-MOVPE grown GaAs and AlGaAs layers can be achieved by intrinsic C-doping using TMGa and TMAl as carbon sources. Free carrier concentrations exceeding 1020 cm−3 were realised at low growth temperatures between 520–540°C and V/III ratios <1.2. The C-concentration increases significantly with the Al-content in AlxGa1−xAs layers. We observed an increase in the atom- and free carrier concentration from 5·1019 cm−3 in GaAs to 1.5·1020 cm−3 in Al0.2Ga0.8As for the same growth conditions. Interband tunneling devices with n-type Si and p-type C-doped AlGaAs layers and barriers made of Al0.25Ga0.26In0.49P have been investigated.  相似文献   

10.
Variable temperature Hall measurements were used to study the electrical properties of undoped and Se-doped AlxGa1-xAs (0 <x < 0.4) layers grown by metalorganic vapour phase epitaxy (MOVPE). It is shown that the deep donor activation energy measured in undoped AlGaAs exhibits a similar dependency upon composition as that reported for Si-doped AlGaAs grown by MBE. For AlxGa1-xAs, doping with selenium is found to reduce the activation energy from 66 meV (forn = 4.1 x 1016/cm3), to 9 meV (forn = 1.6 × 1018/cm3).  相似文献   

11.
We have studied the evolution of threading dislocations (TDs), stress, and cracking of GaN films grown on (111) Si substrates using a variety of buffer layers including thin AlN, compositionally graded Al x Ga1-x N (0 ≤ x ≤ 1), and AlN/Al y Ga1-y N/Al x Ga1-x N (0 ≤ x ≤ 1, y = 0 and 0.25) multilayer buffers. We find a reduction in TD density in GaN films grown on graded Al x Ga1-x N buffer layers, in comparison with those grown directly on a thin AlN buffer layer. Threading dislocation bending and annihilation occurs in the region in the graded Al x Ga1-x N grown under a compressive stress, which leads to a decrease of TD density in the overgrown GaN films. In addition, growing a thin AlN/Al y Ga1-y N bilayer prior to growing the compositionally graded Al x Ga1-x N buffer layer significantly reduces the initial TD density in the Al x Ga1-x N buffer layer, which subsequently further reduces the TD density in the overgrown GaN film. In-situ stress measurements reveal a delayed compressive-to-tensile stress transition for GaN films grown on graded Al x Ga1-x N buffer layers or multilayer buffers, in comparison to the film grown on a thin AlN buffer layer, which subsequently reduces the crack densities in the films.  相似文献   

12.
Carbon doping in AlxGa1−xAs was achieved using different approaches. The moderate growth temperature of 650°C was employed to grow C bulk-doped AlxGa1−xAs with a high Al mole fraction. The hole-density was altered using different V/III ratios. The trimethylaluminum (TMAl) was used as an effective C δ-doping precursor for growth of C δ-doped pipi doping superlattices in AlxGa1−xAs. the average hole-density of C δ-doped pipi superlattices was greater than 2−3 × 1019 cm−3. Zn-free GRINSCH In0.2Ga0.8As/GaAs laser structures were then grown using the C bulk-doped AlxGa1−xAs and C δ-doped pipi superlattice as a cladding and ohmic contact layer, respectively. The ridge waveguide laser diodes were fabricated and characterized to verify flexibility of these two doping approaches for device structures.  相似文献   

13.
Electrical activation studies of Al x Ga1−x N (x = 0.45 and 0.51) implanted with Si for n-type conductivity have been made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1 × 1014 cm−2 to 1 × 1015 cm−2 at room temperature. The samples were subsequently annealed from 1150°C to 1350°C for 20 min in a nitrogen environment. Nearly 100% electrical activation efficiency was successfully obtained for the Si-implanted Al0.45Ga0.55N samples after annealing at 1350°C for doses of 1 × 1014 cm−2 and 5 × 1014 cm−2 and at 1200°C for a dose of 1 × 1015 cm−2, and for the Al0.51Ga0.49N implanted with silicon doses of 1 × 1014 cm−2 and 5 × 1014 cm−2 after annealing at 1300°C. The highest room-temperature mobility obtained was 61 cm2/V s and 55 cm2/V s for the low-dose implanted Al0.45Ga0.55N and Al0.51Ga0.49N, respectively, after annealing at 1350°C for 20 min. These results show unprecedented activation efficiencies for Al x Ga1−x N with high Al mole fractions and provide suitable annealing conditions for Al x Ga1−x N-based device applications.  相似文献   

14.
A dilute mixture of CCl4 in H2 has recently been shown to be a suitable carbon doping source for obtainingp-type GaAs grown by metalorganic chemical vapor deposition (MOCVD) with carbon acceptor concentrations in excess of 1 × 1019cm−3. To understand the effect of growth parameters on carbon incorporation in CCl4 doped Al x Ga1−x As, carbon acceptor concentration was studied as a function of Al composition, growth temperature, growth rate, and CCl4 flow rate using electrochemical capacitance-voltage profiling. The carbon incorporation as a function of Al composition, growth temperature and CCl4 flow rate was also measured by secondary ion mass spectroscopy (SIMS). All layers were grown by low pressure MOCVD using TMGa and TMAl as column III precursors, and 100% AsH3 as the column V source. Increased Al composition reduced the dependence of carbon concentration on the growth temperature. Reduced growth rate, which resulted in substantially decreased carbon acceptor concentrations in GaAs, had an insignificant effect on the carrier concentration of Al0.4Ga0.6As. A linear relationship between hole concentration and CC14 flow rate in AlxGa1−x As for 0.0 ≤x ≤ 0.8 was observed. These results are interpreted to indicate that adsorption and desorption of CCl y (y ≤ 3) on the Al x Ga1-x As surface during crystal growth plays an important role in the carbon incorporation mechanism.  相似文献   

15.
In this work, we present electrical characterizations of n+ GaAs/low temperature (LT)-Al0.3Ga0.7As/n+ GaAs resistor structures in which the LT layers are grown at nominal substrate temperatures of 250 and 300°C. The resistivity and Vtfl parameters of these LT-Al0.3Ga0.7As layers are compared with those of LT-GaAs and Al0.3Ga0.7As grown at a normal growth temperature of 720°C. Low-temperature Al0.3Ga0.7As layers exhibit resistivities as high as 1012 ohm-cm, nearly four orders of magnitude higher than that of LT-GaAs, and Vtfl values as high as 45 V, over twice that of LT-GaAs. We also find that the LT-Al0.3Ga0.7As materials grown at 250 and 300°C appear to show opposite and contradictory trends with respect to resistivity and Vtfl. We propose that this result can be explained by residual hopping conduction in the 250°C material. Temperature dependent conductivity measurements confirm the presence of a hopping mechanism in LT-Al0.3Ga0.7As grown at 250°C and yield activation energies of 0.77 and 0.95 eV for LT-GaAs and LT-Al0.3Ga0.7As, respectively.  相似文献   

16.
Data presented here demonstrate that strained-layer (111)B Al0.15Ga0.85As-In0.04Ga0.96As quantum wells exhibit unique optical properties when compared to otherwise identical (100) oriented strained layers. Photoluminescence measurements identify a strain-induced electric field of order 6.7 Vμm-1 within the (111)B quantum well that is not present for the (100) case. Photoluminescence excitation spectroscopy measurements show that the heavy-hole to light-hole energy band splitting is approximately 7 meV larger for the (111)B structure than for the (100) structure. Howard Hughes Doctoral Fellow IBM Graduate Fellow  相似文献   

17.
We have developed a technology for producing n-type GaxIn1−x N/p-Si heterostructures by combined pyrolysis of indium and gallium monoammoniate chlorides, making it possible to obtain heterolayers with composition varying over wide limits (from GaN up to InN). The composition and basic electric and optical characteristics of nitride films were determined. The electric and photoelectric properties of the heterostructures with GaxIn1−x N films of different composition were investigated. It was shown that the anisotypic heterojunction n-GaxIn1−x N/p-Si is a promising photosensitive element for detecting visible-range radiation. The maximum values of the specific detectivity were D*=1.2×1011 Hz1/2·W−1 at 290 K. A band diagram of the heterojunction was constructed. Fiz. Tekh. Poluprovodn. 32, 461–465 (April 1998)  相似文献   

18.
The effect of the properties of interfaces with Group-III phosphides on characteristics of GaInP solar cells has been studied. It is shown that the large valence band offset at the p-GaAs/p-AlInP interface imposes fundamental limitations on the use of p-AlInP layers as a wide-band-gap window in p-n structures of solar cells operating at ratios of high solar light concentration. It is demonstrated that characteristics of p-n solar cells can be, in principle, improved by using a double-layer wide-band-gap window constituted by p-Al0.8Ga0.2As and p-(Al0.6Ga0.4)0.51In0.49P layers.  相似文献   

19.
The method of ballistic electron emission spectroscopy is used for the first time to study the energy spectrum of Er-impurity complexes in Si. The features are observed in the ballistic electron spectra of mesa diodes based on p +-n + Si structures with a thin (∼30 nm) p +-Si:Er surface layer in the region of ballistic-electron energies eV t lower than the conduction-band-edge energy E c in this layer. They are associated with the tunnel injection of ballistic electrons from the probe of the scanning tunnel microscope to the deep donor levels of the Er-impurity complexes in the p +-Si:Er layer with subsequent thermal excitation into the conduction band and the diffusion to the p +-n + junction and the direct tunneling in it. To verify this assumption, the ballistic-electron transport was simulated in the system of the Pt probe, native-oxide layer SiO2-p +-Si:Er-n +, and Si substrate. By approximating the experimental ballistic-electron spectra with the modeling spectra, the ground-state energy of the Er complex in Si was determined: E d E c − 0.27 eV. The indicated value is consistent with the data published previously and obtained from the measurements of the temperature dependence of the free-carrier concentration in Si:Er layers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号