首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
研究了CaO-MgO/SiO2负载型固体碱催化剂的制备条件,并对其进行XRD、FT-IR、BET和CO2-TPD表征分 析,仪器分析表明CaO成功引入到载体,MgO起助催化作用增强了碱性并研究该固体碱催化剂酯交换反应催化毛豆油制备生物柴油的条件.考查反应时间、反应温度、醇油比、催化剂用量和原料中水分含量的影响.研究表明,在反应时间6h,反应温度65℃,醇油比18:1,催化剂用量3%,原料油水份含量低于1%时,生物柴油收率可达95.4%,甘油收率达96%以上.  相似文献   

2.
亚临界甲醇中固体催化剂催化酯交换反应的活性比较   总被引:1,自引:0,他引:1  
对几种固体催化剂用于亚临界甲醇与大豆油的酯交换反应制备生物柴油的催化活性进行了研究。考察在不同催化剂作用下酯交换反应产物中脂肪酸甲酯(FAMEs)含量随反应时间的变化规律。结果表明。在醇油摩尔比为40,反应温度为180℃,反应压力为2~3MPa,催化剂用量为3g及反应时间为10min的条件下,K2O/γ-Al2O3催化酯交换反应的产物中FAMEs含量达90%。  相似文献   

3.
叙述了以固体超强酸SO4^2-/TiO2-SiO2为催化剂,催化大豆油和甲醇的酯交换反应制备生物柴油的实验。结果表明,该催化剂对酯交换反应有很高的催化活性,催化剂的活性不受体系中游离脂肪酸的影响。在醇油摩尔比为13:1时,每摩尔油使用1.0g催化剂,125℃反应3h,脂肪酸甲酯的收率达90%。催化剂的吡啶红外谱图表明催化剂具有L酸中心和B酸中心,催化剂的NH3-TPD曲线表明催化剂具有超强酸性。  相似文献   

4.
固体碱催化剂在麻疯树油合成生物柴油中的应用   总被引:1,自引:0,他引:1  
简述了生物柴油作为燃料的优越性,讨论了以固体碱作催化剂、以麻疯树油为原料合成生物柴油的工艺条件.试验研究了该反应的最佳反应条件:固体碱催化剂的用量为麻疯树油质量的1%,油醇物质的量比为1:6,反应温度为70℃.  相似文献   

5.
固体酸催化剂在生物柴油合成实验中的研究   总被引:2,自引:0,他引:2  
针对生物柴油催化合成技术中,采用一般催化剂所存在的问题,自制了4种固体酸催化剂,测试了它们在以大豆酸化油为原料制备生物柴油反应中的催化活性及重复使用性,确定了合成生物柴油的工艺条件。  相似文献   

6.
生物柴油制备新进展   总被引:1,自引:0,他引:1  
介绍了国内外酯交换制备生物柴油的最新进展.目前酯交换法制备生物柴油主要有4种方法:均相酸碱催化法、酶催化法、超临界法和非均相催化剂催化法,综合比较了4种酯交换生产方法的优缺点,同时介绍了生物柴油制备的最新进展,指出了生物柴油的发展趋势.  相似文献   

7.
针对工业上生产生物柴油的制备技术、工艺流程、酯交换反应影响因素、质量指标以及在柴油机上燃烧的关键技术等进行了综述。国内外仍然以酯交换法反应为主,且常以氢氧化钠等碱为催化剂。如何降低生物柴油中甲醇、甘油、水含量以及研制适用于生物柴油的抗氧化剂均是生物柴油应用的关键技术。关于多种生物柴油的掺混燃烧以及燃用生物柴油导致的排放对于生物系统的细胞毒害性和突变性等涉及人类健康影响的研究仍然有待加强。  相似文献   

8.
以固体碱硅酸钠为催化剂进行酯交换反应制备生物柴油,采用响应曲面法中的Box-Behnken模式对影响生物柴油转化率的4个主要因素(温度、催化剂用量、反应时间、醇油物质的量比)进行优化.建立生物柴油转化率的二次多项回归模型方程,并对回归方程系数进行显著性检验和方差分析.试验结果表明:当反应温度为66℃、催化剂用量为大豆油质量的2.1%、反应时间为7h、醇油物质的量比为8.6:1时,生物柴油的转化率最高,最高转化率预测值为75.78%,与实测值基本相符,优化模型有效可靠.  相似文献   

9.
硫酸氢钠催化生物柴油合成反应的研究   总被引:5,自引:0,他引:5  
以固体酸硫酸氢钠(NaHSO4·H20)为催化剂,以菜籽油和甲醇为反应物进行酯交换反应制备脂肪酸甲酯(生物柴油).采用正交实验考察了各因素对生物柴油产率的影响,得出最佳反应条件:反应温度为90℃,反应时间为12h,醇油物质的量比为40:1,催化剂用量为菜籽油质量的6%.极差顺序为温度、反应时间、醇油物质的量比、催化剂用量.  相似文献   

10.
以粉煤灰作为载体,通过负载Na OH制备负载型固体碱,并对其进行XRD、FT-IR及SEM等技术手段表征。结果表明:经焙烧的粉煤灰固体碱催化剂表面产生新的晶相,Na OH可成功负载到粉煤灰表面,形成催化活性中心,催化剂的催化活性增强。考察催化剂的用量、醇油物质的量之比、反应温度、反应时间等因素对大豆油酯交换制备生物柴油的影响。数据显示:在催化剂用量为5%、醇油物质的量之比为12∶1、反应温度为65℃、反应时间为2 h时,生物柴油产率可达97%。  相似文献   

11.
Transesterification of refined cottonseed oil was studied in the presence of silica sulfuric acid as a new heterogeneous solid acid catalyst to overcome the drawbacks of homogeneous alkali and acid catalysts. The effect of various reaction parameters, such as oil to methanol ratio, reaction temperature, reaction time, and catalyst amount, was investigated. The highest methyl ester conversion was obtained at 373 K using 5% catalyst amount and 1:20 methanol ratio within 8 h. Silica sulfuric acid was found to be a promising catalyst for cleaner biodiesel production without tedious post treatments for the product purification.  相似文献   

12.
采用经气化炉烧结的生物质结渣为固体碱催化剂,催化油脂转化合成生物柴油.对固体碱催化剂进行表征,并考察物质的量之比、反应温度、反应时间和催化剂用量对反应的影响.结果表明:生物质结渣固体碱催化剂主要成分(按质量分数计)为SiO2(40%~60%)、CaO(10%~20%)、K2O(10%~15%)、MgO(≤10%)、Al...  相似文献   

13.
To generate efficient pour point depressants (PPDs) for biodiesel, this study prepared a series of MC–MA polymers and their cold flow properties on biodiesel were studied by determining their solid points (SPs) and cold filter plugging points (CFPPs). This study also investigated the performance mechanisms of these polymers through differential scanning calorimetry (DSC) and rheological mechanics to identify the low-temperature crystal morphology and crystallization behavior of the biodiesel samples. Results indicated that compared with other polymers, the synthesis of polymer PPD2 could satisfactorily improve the low-temperature flow properties of biodiesel without altering other important fuel properties.  相似文献   

14.
In this study, potassium hydroxide-treated animal bones were employed? as a solid heterogeneous catalyst in transesterification of waste cooking oil. This catalyst was characterized by the Fourier-transform infrared spectroscopy (FTIR), and it displayed high-catalytic activity for biodiesel production. Optimum conditions for biodiesel production were catalyst loading 6.0% (w/w) of oil, methanol/oil molar ratio 9:1, calcination temperature 800°C, reaction temperature 65°C, and reaction time of 5 h, which gave maximum biodiesel yield of 84%. Reusability of the catalyst was also confirmed by repeated use of the same catalyst three times without losing much of its activity. Hence, calcined goat bones were found to be a potentially applicable catalyst for biodiesel production at industrial scale.  相似文献   

15.
The present work investigates the synthesis of a new and highly efficient sodium‐doped nanohydroxyapatite, as a heterogeneous catalyst for the production of fatty acid methyl esters from Schizochytrium algae oil. Sodium nitrate supported on nanohydroxyapatite catalyst was prepared using wet impregnation technique and calcinated at different temperatures. The synthesized nanocatalyst was characterized to determine the structural and morphological properties, using BET, XRD, TGA, FTIR, ICP, and TEM. Characterization results reported that the catalyst calcinated at 900°C exhibits good catalytic property. The catalyst was utilized for the production of biodiesel, under different reaction parameters through transesterification process. Response surface methodology (RSM) and artificial neural network (ANN) were employed to evaluate the best combination of molar ratio, catalyst concentration, and reaction time for transesterification process. By using point prediction method, the optimum yield of 96% was achieved at the catalyst concentration of 9.5 wt% of oil, 1:12 molar ratio, and 121‐minute reaction time. The physiochemical properties of the biodiesel were determined, and the result suggested that the biodiesel produced met ASTM D6751 standard. The catalyst exhibits good catalytic performance on reusability up to six runs without the loss of molecular activity. Therefore, the synthesized heterogeneous catalyst derived from animal bone could be efficiently used for the biodiesel production.  相似文献   

16.
The pursuit towards an alternative solution to fossil fuel has facilitated science investigation initiatives that compare various options leading to biodiesel production. Besides conventional feedstock derived from vegetable oils, alternative sources that could be produce in large scale at competitive costs are the main scope of research in this field. This paper investigates the financial feasibility using organic solid waste as a feedstock, which results in the production of biodiesel through the conversion of volatile fatty acids into lipids (VFA). As a result, based on existing references of capital and operating costs, production and extraction yields for VFA and lipids and an internal rate of return of 15% in real terms, we concluded that biodiesel production is competitive compared to subsidized biodiesel traded in regions of Europe and the United States. These results encourage research aims to examine this technology at a larger scale. The adoption of public policies for the urban waste's disposal and collection, to reduced municipality's costs associated to the treatment, is also important for the implementation of these technologies.  相似文献   

17.
In this study, two continuous processes for biodiesel production, alkali catalyzed process and solid acid catalyzed process, are discussed with the help of Aspen Plus. By comparing some economic indicators, it can be found that solid acid catalysis could be a good choice for investors in the near future.  相似文献   

18.
纳米磁性固体催化剂制备生物柴油   总被引:1,自引:0,他引:1  
以我国特有的四大木本油料树种之一的乌桕为原料,利用自制的新型纳米磁性固体催化剂制备乌桕梓油生物柴油,以中心组合设计试验。由气相色谱检测得乌桕梓油制备的生物柴油的主要成分是C16:0、C18:0、C18:1、C18:2和C18:3的脂肪酸甲酯;在最佳条件下的酯化率为96.78%。  相似文献   

19.
The use of calcined egg and cockle shell as heterogeneous solid catalysts for a transesterification reaction to produce biodiesel from food processing waste has been investigated in this work. The CaO catalysts were obtained from the calcination of egg and cockle shell and were characterized by surface analysis, X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The experiments employed stirring and ultrasonic agitation, which proved to be a time-efficient approach for biodiesel production from food processing waste oil. A response surface methodology (RSM) was used to evaluate the effects of the process variables methanol to oil molar ratio, catalyst concentration, and reaction time on biodiesel production. The optimal % fatty acid methyl ester values obtained when using egg and cockle shells as catalysts were found to be 94.7% and 94.4% when the methanol to oil molar ratios were 9.3:1 and 8.5:1, egg and cockle shell catalyst mass fraction percentages were 3.8% and 3.5%, and reaction times were 47 and 44 min, respectively. The study has shown that ultrasonic agitation might be employed in a practical pilot reactor for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号