首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The effects of monensin on transition cow metabolism may be dependent on modulation of feeding behavior, rumen pH, and expression of key metabolic genes. Multiparous Holstein cows were used to determine the effects of monensin (400mg/cow daily) on these variables. Cows were randomly assigned, based on calving date, to control or monensin treatments (n = 16 per treatment) 21 d before their expected calving date, and cows remained on treatments through 21 d postpartum. Feeding behavior and water intake data were collected daily. Liver biopsies were conducted after assessing BCS and BW on d -21, -7, 1, 7, and 21 relative to calving for analysis of triglyceride (TG) content as well as mRNA abundance of cytosolic phosphoenolpyruvate carboxykinase, carnitine palmitoyltransferase 1a, and apolipoprotein B. Blood samples were collected 21, 7, and 4 d before expected calving and 1 (day of calving), 4, 7, 14, and 21 d postpartum for nonesterified fatty acid, β-hydroxybutyrate, glucose, insulin, and haptoglobin analyses. Ruminal pH was collected every 5 min on d 1 through 6 postpartum via a wireless indwelling probe. On d 7 postpartum, a caffeine clearance test was performed to assess liver function. Data were analyzed using mixed models with repeated measures over time. Monensin decreased mean plasma β-hydroxybutyrate (734 vs. 616 ± 41 μM) and peak concentrations (1,076 vs. 777 ± 70 μM on d 4 postpartum). Monensin also decreased time between meals prepartum (143 vs. 126 ± 5.0 min) and postpartum (88.8 vs. 81.4 ± 2.9 min), which was likely related to a smaller ruminal pH standard deviation in the first day after cows changed to a lactation ration (0.31 vs. 0.26 ± 0.015). Monensin also increased liver mRNA abundance of carnitine palmitoyltransferase 1a (0.10 vs. 0.15 ± 0.002 arbitrary units), which corresponded to a slower rate of liver TG accumulation from d -7 to +7 (412 vs. 128 ± 83 mg of TG/g of protein over this time period). No significant effects of monensin supplementation were observed on milk production, liver cytosolic phosphoenolpyruvate carboxykinase, apolipoprotein B, plasma nonesterified fatty acid, glucose, insulin, or haptoglobin. No effects on disease incidence were detected, but sample size was small for detecting such effects. Overall, results confirm that the effects of monensin on transition cows extend beyond altered propionate flux.  相似文献   

2.
Effects of dietary NDF concentration on chewing and productivity were assessed using silage-based diets with and without supplemental long hay. Twelve Holstein cows (125 d postpartum) were used in a double 6 x 6 Latin square to evaluate six diets formulated using high moisture shelled corn and alfalfa silage (37% DM, 23% CP, 48% NDF) to provide three concentrations of NDF: 26, 30, and 34%. At each concentration, an alternative diet was formulated by substituting 15% of the silage DM with an equivalent amount of long alfalfa grass hay (14% CP, 61% NDF). Cows were fed at 85% of ad libitum intake, and ingredients were allocated separately. Increasing NDF decreased milk yield from 20.8 to 19.9 and 19.1 kg/d, for 26, 30, and 34%, respectively. Supplementing diets with hay increased milk production by .7 kg/d, although milk fat content was not affected. Increasing NDF resulted in a quadratic increase in ruminating and total chewing time from 344 and 558 for 26% NDF, to 413 and 651 for 30%, and 414 and 674 min/d for 34%, respectively. Added hay did not increase daily ruminating and chewing time; ruminating time per unit of NDF intake was reduced by hay supplementation (75.3 vs. 69.4 min/kg).  相似文献   

3.
Saturated and unsaturated fatty acid supplements (FS) were evaluated for effects on feed intake, meal patterns, and chewing behavior. Eight ruminally and duodenally cannulated cows were used in a replicated 4 × 4 Latin square design experiment with 21-d periods. Treatments were control and a linear substitution of 2.5% fatty acids from supplemented saturated FS (SAT; prilled, hydrogenated free fatty acids) for partially unsaturated FS (UNS; calcium soaps of long-chain fatty acids). All rations contained identical forage and concentrate components including 37.2% forage and 13.5% cottonseed. Dry matter intake for SAT was not different from control, whereas increasing unsaturated FS linearly decreased dry matter intake by 3.2 kg. Wet weight of ruminal digesta decreased linearly up to 11.3 kg (13%) with increasing unsaturated FS. Adding supplementary fatty acids did not change meal number, meal length, or time between meals compared with control, but increasing unsaturated FS decreased meal size 0.22 kg (9%) within FS. The SAT treatment increased time spent ruminating by 56 (10%) and 42 (7%) min/d compared with control and UNS, respectively. Increasing saturated FS did not affect frequency of rumination bouts or interval between bouts, but increased rumination bout length by 5.6 min. Water intake was not affected by treatment, but increasing saturated FS linearly decreased the number of drinking bouts per day by up to 2.9 bouts (23%). Increased unsaturated fatty acid flow to the duodenum decreased feed intake by decreasing meal size, and increased saturated fatty acid flow to the duodenum increased rumination time per day by increasing rumination bout length.  相似文献   

4.
Eight ruminally cannulated lactating Holstein cows were used in a double 4 x 4 Latin square to determine the effects of 1) proportion of barley silage [40, 50, and 60% of dry matter (DM)] in the diet, and 2) feeding a total mixed ration (TMR) compared with separate ingredients (SI) on chewing activities, saliva production, and ruminal pH. Although cows fed SI were offered a diet containing 50% silage, they actually consumed a diet containing 43% silage (DM basis). Dry matter intake and milk yield were similar for all diets (18.2 kg of DM/d and 27.2 kg/d, respectively). Cows fed the 40% silage TMR spent more time eating than cows fed SI (243 vs. 198 min/d), but rumination time was similar (546 min/d). Eating time was similar among the TMR diets, but rumination time increased from 498 to 516 and 584 min/d as silage in the TMR increased from 40 to 50, and then to 60%, respectively. The secretion of saliva per gram of feed was 4.43, 3.18, and 1.19 ml/g of DM with consumption of silage, TMR, and concentrate, respectively. Resting salivation rate was similar for all diets (101 ml/min). Regardless of the diet, cows secreted 239 +/- 17 L/d of saliva, and ruminal pH was below 5.8 for 10 h/d. Results indicated increased chewing time did not increase total daily saliva secretion because increased eating and ruminating saliva was associated with decreased resting saliva. Feeding SI increased the risk of acidosis, because cows ate a higher proportion of concentrate than intended.  相似文献   

5.
The objective of this study was to compare triticale dried distillers grains plus solubles (TDDGS) as a source of dietary N with other high-protein feeds commonly used in North America: corn dried distillers grains plus solubles (CDDGS), canola meal (CM), and soybean meal (SBM). Rumen degradable protein (% of crude protein, CP) after 16 h of incubation in the rumen was higher for CDDGS and TDDGS (69.3% and 64.5%, respectively) than for CM (62.2%) and SBM (53.0%). For the lactation study, experimental diets were formulated to supply 30% of dietary CP from TDDGS, CDDGS, CM, or SBM. These diets contained 22.3% forage neutral detergent fiber and approximately 19.2% CP and were fed to 12 multiparous Holstein cows (130 ± 40 d in milk) in a 4 × 12 Latin rectangle design with 21-d periods. Neither dry matter intake nor milk yield was affected by treatment, averaging 25.5 and 35.5 kg/d, respectively. Plasma concentrations of Arg, Lys, and Thr were greater for cows fed CM or SBM compared with those fed TDDGS or CDDGS, whereas plasma concentrations of Leu and Phe were lower for cows fed CM or SBM compared with those fed TDDGS or CDDGS. Cows fed CDDGS had lower milk CP yield compared with cows fed CM (1.07 vs. 1.16 kg/d). Contrarily, milk CP and milk lactose yields were not different for cows fed TDDGS compared with CM or SBM. These data suggest that TDDGS can replace CM or SBM in the diets of lactating dairy cows without adverse effects on production. Furthermore, although dried distillers grain has been generally accepted as a feed high in ruminal undegradable protein, CDDGS and TDDGS used in the present study had high in situ ruminal degradable crude protein. Further investigation is warranted to determine the extent of variation in ruminal protein degradation among different types of dried distillers grains.  相似文献   

6.
Six ruminally fistulated Holstein cows (80 d postpartum) were used in a 6 x 6 Latin square to evaluate the effects of dietary NDF concentration and alfalfa hay quality on chewing activities, digestive parameters, and productivity of dairy cattle. Cows received one of six diets formulated to provide three concentrations of dietary NDF (31, 34, and 37%) and two sources of first-cutting, long alfalfa hay. Alfalfa hay was harvested either in early bloom (19.4% CP, 38.8% NDF) or midbloom (16.7% CP, 47.6% NDF) stages of maturity. Dietary NDF concentrations were achieved by adjusting the forage to concentrate ratios. Mean ad libitum DMI was 22.3 kg/d. Increased NDF concentration of the diet corresponded to a linear decrease in milk production (from 26.5 to 24.8 kg/d) and a linear increase in the fat content of milk (from 2.68 to 3.30%). Hay quality had no effect on milk production and composition when diets were formulated for specific NDF concentrations. Total chewing time increased from 767 to 796 and 853 min/d as fiber content of the diet increased from 31 to 34 and 37%, mainly because of increased time spent eating. Rumination time adjusted for fiber intake decreased linearly from 59.0 to 54.2 min/kg NDF as fiber intake increased, and it was higher for the early bloom than for the midbloom hay (57.3 vs. 55.5 min/kg NDF). Effects of decreased forage quality because of the increased maturity of the alfalfa hay can be minimized by formulating diets for specific NDF concentration. For diets formulated with barley-based concentrates, dietary NDF concentrations should be higher than currently recommended with allowance for greater proportions of NDF from concentrates.  相似文献   

7.
8.
Effects of conservation method of corn grain and dietary starch concentration on dry matter intake (DMI) and productivity of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated Holstein cows (55 +/- 15.9 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Experimental diets contained either ground high-moisture corn (HM) or dry ground corn (DG) at two dietary starch concentrations (32 vs 21%). Mean particle size and dry matter (DM) concentration of corn grain were 1863 pm and 63.2%, and 885 microm and 89.7%, for HM and DG, respectively. DMI was lower for HM compared to DG treatment in high-starch diets (20.8 vs 22.5 kg/d), but similar for the HM and DG treatments in low-starch diets (19.7 vs 19.6 kg/d). This reduction in DMI is attributed to smaller meal size for HM compared to DG in high-starch diets (1.9 vs 2.3 kg of DM for high-starch diets; 2.1 vs 2.0 kg of DM for low-starch diets). Faster starch fermentation for HM in high-starch diets might result in satiety with smaller meal size. Milk yield was greater when cows were fed high-starch diets compared to low-starch diets (38.6 vs 33.9 kg/d) regardless of corn grain treatment. High-starch diets increased solids-corrected milk yield by 3.3 kg (35.2 vs 31.9 kg/d) compared to low-starch diets for cows fed DG, but did not increase for cows fed HM. This was because of a lower milk fat concentration for cows fed HM in high-starch diets. Reducing ruminal starch fermentation by substituting DG for HM can increase the productivity of lactating cows fed high-starch diets.  相似文献   

9.
Objectives of the study were to evaluate the effect of planting date on in vitro neutral detergent fiber digestibility (IVFD) of whole-crop barley (Hordeum vulgare) and its effects on productivity of lactating dairy cows. Two cultivars of barley were planted on May 5 (BM) and June 7 (BJ), 2005 at the Edmonton Research Station, University of Alberta. They were harvested at late-dough stage on July 26 and August 25, respectively, for BM and BJ and ensiled. The BJ had greater 30-h IVFD (61.2 vs. 51.9%) and crude protein concentration (12.4 vs. 8.7%) at harvest compared with BM. Thirty lactating cows, including 6 ruminally cannulated cows, in mid to late lactation (183 ± 71.7 d in milk; mean ± standard deviation) were fed diets containing BM or BJ at 58.5% of dietary DM in a crossover design with 19-d periods. The dietary neutral detergent fiber concentration was 30.6 and 28.8% for BM and BJ diets, respectively. Dry matter intake and milk yield were not affected by treatment and averaged 20.2 and 27.2 kg/ d, respectively. The lack of responses could have been attributed to the low-energy demands for cows used in this experiment; ruminal physical fill might not have limited dry matter intake. However, cows fed BJ had greater total tract dry matter digestibility (68.9 vs. 66.1%) and tended to increase body weight gain (864 vs. 504 g/d) compared with those fed BM. Delaying the planting date of barley altered its growing environment and affected nutrient composition and IVFD of whole-crop barley and energy availability to animals. Further research is needed to confirm if the planting date consistently affects nutrient composition and IVFD of barley at harvest.  相似文献   

10.
A study was conducted to investigate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets containing corn silage as the sole forage type on feed intake, meal patterns, chewing activity, and rumen pH. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Diets were chemically similar but varied in peNDF content (high, medium, and low) by altering corn silage particle length. The physical effectiveness factors for the long (original), medium (rechopped once), and fine (rechopped twice) silages were determined using the Penn State Particle Separator and were 0.84, 0.73, and 0.67, respectively. The peNDF contents of the diets were 11.5, 10.3, and 8.9%, for the high, medium, and low diets, respectively. Increased forage particle length increased intake of peNDF but did not affect intake of DM or NDF. Number of chews (chews/d) and chewing time, including eating and ruminating time, were linearly increased with increasing dietary peNDF. Meal patterns were generally similar for all treatments, except that number of meals was quadratically increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Dietary peNDF content was moderately correlated to number of chews during eating (r = 0.41) and to total chewing time (r = 0.37). The present study demonstrates that increasing the peNDF content of diets increased chewing time, but increased chewing time did not necessarily reduce ruminal acidosis. Models that predict rumen pH should include both peNDF and fermentable OM intake. Dietary particle size, expressed as peNDF, was a reliable indicator of chewing activity.  相似文献   

11.
The effectiveness of neutral detergent fiber (NDF) from soyhulls and whole cottonseed for replacing NDF from forage was evaluated in a lactation trial during wk 10 to 25 of lactation. Forty-eight cows were blocked and randomly assigned within a block to one of four diets: 1) 21% forage NDF with corn 2) 16% forage NDF with corn, 3) 16% forage NDF with corn and wheat (1:1) and, 4) 11% forage NDF with cottonseed and corn. Soybean hulls were added at approximately 23.0% of dry matter (DM) for the 16 and 11% forage NDF diets to replace forage and formulate diets with 35% nonfiber carbohydrates. Actual forage NDF concentration were 17.8, 14.0, 13.9, and 9.4%, respectively. Dry matter intake and milk yield were highest for cows fed 11% forage NDF with cottonseed. Milk fat percentage was higher for cows consuming 21% forage NDF and 16% forage NDF with corn than for cows fed the two other diets. Cows fed 16% forage NDF with corn and wheat experienced milk fat-protein inversion, but ruminal acetate:propionate was lower for cows fed 11% forage NDF than cows fed 16% forage NDF. Body weight (BW) and BW change were not different among treatments. Time spent chewing was similar among all diets. For cows in midlactation, forage NDF may be reduced to 9 to 11% when cottonseed is at 11% of DM and dietary nonstructural carbohydrates are at 30% of DM. Forage NDF may be reduced to 14 to 16% without cottonseed when nonstructural carbohydrates are at 30% of DM.  相似文献   

12.
The objective of this study was to investigate the effects of physically effective neutral detergent fiber (peNDF) content of dairy cow diets containing barley silage as the sole forage source on feed intake, chewing activity, and ruminal pH. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Cows were offered 1 of 3 diets (high, medium, and low peNDF) obtained using barley silage that varied in particle length: long (theoretical cut length of 9.5 mm), medium (equal proportions of long and fine silages), and fine (theoretical cut length of 4.8 mm). The peNDF contents were determined using the Penn State Particle Separator and were 13.8, 11.8, and 10.5%, for the high, medium, and low diets, respectively. The physical effectiveness factors (defined as proportion retained on 19- and 8-mm screens) for the long and fine silages were 0.84 and 0.68, respectively. Increased forage particle size increased intake of peNDF but did not affect intake of DM and NDF. Ruminating and total chewing time were linearly increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line drawn at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Intake of peNDF was not correlated to any chewing activity but proportion of long particles on the 19-mm sieve tended to be correlated to ruminating chews (r = 0.36) and ruminating time (r = 0.36). These results indicate that increasing the peNDF content of diets increases chewing time. However, increased chewing time does not always improve ruminal pH status. Increasing chewing time and thus increasing salivary secretion may not fully overcome the effects of feed digestion and the production of fermentation acids that lower rumen pH. The results suggest that dietary peNDF and fermentable OM intake are critical in regulating rumen pH. Dietary particle size, expressed as peNDF, was a reliable indication of chewing activity.  相似文献   

13.
14.
Phosphorus depletion and hypophosphatemia have been described to interfere with immune function in rats and humans. In dairy cows, hypophosphatemia has been associated with muscle weakness and recumbency as well as with intravascular hemolysis resulting from increased osmotic fragility of erythrocytes, but so far, the influence of P depletion and hypophosphatemia on immune function has not been studied. Therefore, the aim of this study was to investigate whether P depletion and ensuing hypophosphatemia are associated with impaired granulocyte and lymphocyte function. Eight mid-lactation dairy cows were fed a P-deficient ration (0.2% P/kg of DM) for a period of 4 wk. The depletion phase was preceded by a 2-wk acclimatization period and followed by a 2-wk repletion phase, during which the same ration was supplemented with P to meet or exceed daily requirements. Blood samples were collected at the end of the acclimatization period, after 2 and 4 wk of P depletion, and at the end of the repletion phase. Plasma phosphate concentrations ([Pi]) were determined and white blood cells were counted and isolated. General immune function was investigated by performing a phagocytosis assay with Staphylococcus aureus and a lymphocyte stimulation test (LST) with concanavalin A and pokeweed mitogen. The plasma [Pi] decreased significantly, with the lowest values (mean 0.7 ± 0.2 mmol/L) occurring after 2 wk of depletion, although depletion was continued for another 2 wk. During repletion, plasma [Pi] increased above baseline concentrations. Granulocyte counts changed in parallel with plasma [Pi] over time, decreasing significantly at 2 wk after P depletion and increasing again thereafter. Granulocyte survival after phagocytosis was lowest after 4 wk of P depletion. Phagocytosis activity of surviving granulocytes determined by mean fluorescence intensity was higher, indicating that phagocytosis was not negatively influenced by P depletion. Lymphocyte stimulation showed a similar trend, with a decreasing stimulation index at the end of P depletion, but differences were not statistically significant. Data presented in this study indicate that hypophosphatemia leads to a decrease in granulocyte counts. Chronic P depletion impairs granulocyte survival during phagocytosis but not phagocytosis activity. Lymphocyte function is not influenced by P depletion.  相似文献   

15.
The objectives of this study were to evaluate the effects of method of presynchronization and source of supplemental Se on uterine health and reproductive performance of lactating dairy cows. Holstein cows (n = 512) were assigned randomly to 2 methods of presynchronization, Presynch (2 PGF2a given 14 d apart) or CIDR-PS (controlled internal drug releasing inserted for 7 d with an injection of PGF2a at removal) and 2 sources of Se, sodium selenite (SS) or selenized yeast (SY) supplemented at 0.3 mg/kg from 25 d before calving to 80 d in milk (DIM) arranged in a 2 × 2 factorial. Cows were inseminated following the Ovsynch protocol (d 0 GnRH, d 7 PGF2a, d 9 GnRH, timed artificial insemination (AI) 12 h after the final GnRH) starting at 12 and 3 d after Presynch and CIDR-PS, respectively. Cows were diagnosed for pregnancy at 28, 42, and 56 d after AI. Source of Se did not influence uterine health and resumption of cyclicity, but fewer CIDR-PS than Presynch cows were cyclic at the beginning of the Ovsynch, although differences in the proportion cyclic may have been caused by the timing when corpus luteum evaluations were performed in the different pre-synchronization treatments. Ovulatory responses were not influenced by source of Se. However, the CIDR-PS increased ovulation to the first GnRH, double ovulation to the final GnRH, and size of ovulatory follicle at PGF2a and final GnRH of the Ovsynch, but did not influence ovulation at the final GnRH of the Ovsynch. Concentrations of estradiol during the Ovsynch increased with follicle diameter and were greater for cows receiving CIDR-PS than Presynch, but they were not influenced by source of Se. Pregnancy per AI on d 28 (32.7%), 42 (28.5%), and 56 (25.9%) after AI, and pregnancy loss (20.5%) from 28 to 56 d were not influenced by source of Se or method of presynchronization. Although cows receiving CIDR-PS had an increased incidence of ovulation to the first GnRH (73.2 vs. 57.8%) and double ovulation to the final GnRH of the Ovsynch (18.7 vs. 9.0%), both of which enhanced pregnancy, the CIDR-PS protocol did not improve pregnancy per AI or reduce pregnancy loss compared with presynchronization with PGF2a alone.  相似文献   

16.
The objective of this experiment was to evaluate effects of reducing corn silage particle size on eating behavior, chewing activity, and rumen fermentation in lactating dairy cows. Four cannulated, multiparous cows averaging 110 +/- 4 d in milk and weighing 675 +/- 70 kg were randomly assigned to a 4 x 4 Latin square. During each of four 14-d periods, animals were offered one of four diets that were chemically similar but varied in corn silage particle size: short (SH), mostly short (MSH), mostly long (MLG), and long (LG), with a geometric mean particle length of 7.4, 7.8, 8.3, and 8.8 mm, respectively. Reducing particle size increased dry matter intake (DMI) linearly (28.0, 26.8, 26.8, and 25.7 kg/d for SH, MSH, MLG, and LG respectively). At 8, 16, and 24 h postfeeding, the neutral detergent fiber (NDF) concentration of feed remaining in the bunk decreased linearly with reduced particle size. Time spent eating or ruminating was not different across treatments; however, total chewing activity (TC; sum of time spent eating and ruminating) exhibited a quadratic response with highest chewing activities observed for diets with shortest and longest particle size. Eating or ruminating time per kilogram of DMI was not affected by corn silage particle size, but TC per kilogram of DMI decreased linearly with decreasing particle size. In comparison, when expressed as minutes per unit of NDF intake (NDFI), ruminating, and TC were linearly reduced as particle size decreased. Rumen pH was not affected by corn silage particle size even though total concentration of volatile fatty acids increased linearly from 89.1 mM/L to 93.6 mM/L as diet particle size decreased. A quadratic effect was observed in molar proportion of acetate and propionate with the highest concentration observed in animals consuming diets of intermediate particle size. Results of this experiment suggest that reducing corn silage particle size may increase DMI, positively affect rumen fermentation, and reduce sorting behavior. Because both chewing activity and sorting tendencies increased when proportion of TMR particles > 19.0 mm increased, results suggest that particle size measurement as estimated by the PSPS is useful in understanding some factors that affect feeding behavior.  相似文献   

17.
Effect of thyroprotein feeding on dairy cows   总被引:1,自引:0,他引:1  
  相似文献   

18.
Two weeks before parturition, 38 Holstein primiparous and multiparous cows were assigned to 1 of 3 treatment groups: control animals (n = 13) received regular total mixed rations (TMR), the low-dose group (n = 14) received the control TMR plus 6 x 10(10) cfu/cow of Propionibacterium strain P169 (P169), and the high-dose group (n = 11) received the control TMR plus 6 x 10(11) cfu/cow of P169 from -2 to 30 wk postpartum. Weekly milk samples were analyzed for percentage of milk fat, protein, lactose, and SNF, milk urea nitrogen, and somatic cell counts. Daily milk production expressed as 4% fat-corrected milk was affected by treatment and week x parity. High-dose and low-dose P169-treated cows exhibited 7.1 and 8.5% increases above controls in daily 4% fat-corrected milk, respectively. Treatment x parity and week significantly influenced percentage of milk fat, lactose, and protein, whereas treatment x parity and treatment x week influenced SNF. Ruminal propionate levels were influenced by treatment such that high-dose P169 cows had greater molar percentage of propionate than did low-dose P169 and control cows. Change in body weight postpartum was influenced by week x parity and treatment x parity such that high-dose and low-dose P169 multiparous cows exhibited a more rapid recovery of wk-1 body weight than did control multiparous cows. There was no treatment, parity, or interaction on days to first postpartum ovulation or on estrous behavior at 45 and 90 d postpartum. We concluded that P169 might have potential as an effective direct-fed microorganism to increase milk production in dairy cows.  相似文献   

19.
Data were from 20 experiments that utilized early to midlactation Holstein cows fed complete mixed diets or fed at constant forage:concentrate ratios. Within-cow diet comparisons (1688 cow-periods) were analyzed by least squares analysis of variance; mathematical model included experiment, cow in experiment, period, body weight, and source of roughage. Objectives were to determine relationships between neutral detergent fiber content of diet and milk yield and dry matter intake. Roughages and number of cow-periods were: sugarcane bagasse/silage (507), cottonseed hulls (504), corn silage (268), ground corrugated boxes (170), alfalfa/peanut hay (132), and others (107). Dry matter intake and estimated net energy intake had linear effects on milk yield and explained 21.6 and 24.0% of its residual variation; milk yield had curvilinear (quadratic) effect and explained 22.4% of dry matter intake residual variation. Interaction between neutral detergent fiber and source of roughage on milk yield, 4% fat-corrected milk, and dry matter intake resulted in reductions of 5.6, 5.6, and 13% in residual variations. Results suggest neutral detergent (% of dry matter) has greater effect on dry matter intake than on milk yield and its use in formulating diets for dairy cows will be within roughage source.  相似文献   

20.
Two experiments were carried out to test the effects of alfalfa particle size and functional specific gravity (FSG) on chewing activity, digestibility, rumen kinetics, and production of lactating dairy cows fed corn silage based rations. In experiment 1, water-holding capacity (WHC), insoluble dry matter, hydration rate, and FSG changes were determined in alfalfa hay (varying in particle size) and corn silage. Reduction of particle size increased bulk density, FSG, and the rate of hydration, and decreased WHC of alfalfa. In experiment 2, 9 midlactation Holstein dairy cows fed total mixed rations containing 3 sizes of alfalfa hay (with geometric mean 7.83, 4.04, and 1.14 mm) were used in a replicated 3 x 3 Latin square design. The diets contained 20, 20, 35, 7, 7.5, 10, 0.3, 0.1, and 0.1% of DM alfalfa, corn silage, barley, soybean meal, beet pulp, wheat bran, dicalcium phosphate, vitamin premix, and salt, respectively. The geometric means (GM) of rations were 3.34, 2.47, and 1.66 mm in long, medium, and fine alfalfa treatments, respectively. Reduction of particle size increased daily NDF intake (kg), but decreased the proportion of physically effective factor (pef) and physically effective NDF (peNDF) in the ingested rations. Reduction of particle size increased the FSG of rations and intake of DM but reduced digestibility of NDF and ash. Reduction of particle size decreased ruminal mean retention time (RMRT), but increased the ruminal particulate passage rate. Milk and FCM yield were not affected by treatments. The rumen pH, total chewing activity, rumination, eating time, and milk fat were reduced as particle size decreased, but milk protein increased. This study showed that reduction of forage particle size increased bulk density, FSG, and hydration rate of alfalfa and was the most influential factor affecting DMI, milk composition, and chewing behavior. Reduction of forage particle size had minimal impact on digestibility and milk production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号