首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protegrin-1 (PG-1), a beta-sheet antimicrobial peptide, was studied in aligned lipid bilayers by oriented circular dichroism (OCD). All of its spectra measured in a variety of lipid compositions were linear superpositions of two primary basis spectra, indicating that PG-1 existed in two different states in membranes. We designated these as state S and state I. The state assumed by PG-1 was strongly influenced by lipid composition, peptide concentration, and hydration condition. We have previously reported that the helical peptides, alamethicin and magainin, also exhibit two distinct OCD basis spectra-one corresponding to surface adsorption with the helix parallel to the bilayer and the other with perpendicular transbilayer insertion. States S and I of PG-1 may correspond to the surface state and the insertion state of alamethicin, since they show a similar dependence on lipid composition, peptide concentration, and hydration condition. Nonoriented CD spectra obtained from vesicle, micelle, and solution preparations are not linear superpositions of the basis spectra of the states S and I. This indicates that a molecular orientation change alone is insufficient to describe the S left and right arrow I transition. Rather, a more complicated process is taking place, perhaps involving a change in the hydrogen bonding pattern of the backbone. Although the structural basis of the OCD spectra remains to be determined, the discovery of two distinct states can provide information about dynamic changes of PG-1 in membranelike environments, properties undoubtedly related to its antimicrobial and cytotoxic effects.  相似文献   

2.
A cationic amphiphilic peptide made of 10 leucine and 10 lysine residues, and four of its fluorescent derivatives in which leucines were substituted by Trp residues at different locations on the primary sequence have been synthesized. The interactions of these five peptides with neutral anionic or cationic vesicles were investigated using circular dichroism, steady state and time-resolved fluorescence with a combination of Trp quenching by brominated lipid probes, monolayers, modeling with minimization and simulated annealing procedures. We show that all the five peptides interact with neutral and anionic DMPC, DMPG, DOPC or egg yolk PC vesicles. The binding takes place whatever the peptide conformation in solution is. In the case of DMPC bilayers the binding free energy DeltaG is estimated at -8 kcal mole-1 and the number of phospholipid molecules involved is about 20-25 per peptide molecule. Peptides are bound as single-stranded alpha helices orientated parallel to the bilayer surface. In the anchoring of phospholipid head groups around the peptides, the lipid molecules are not smeared out in a plane parallel to the membrane surface but are organized around the hydrophilic face of the alpha helices like 'wheat grains around an ear' and protrude outside the bilayer towards the solvent. We suggest that such a lipid arrangement generates transient structural defects responsible for the membrane permeability enhancement. When an electrical potential is applied, the axis of the peptide helices remains parallel to the membrane surface and does not reorient to give rise to a bundle of helix monomers that forms transmembrane channels via a 'barrel stave' mechanism. The penetration depth of alpha helices in relation to the position of phosphorus atoms in the unperturbed lipid leaflet is estimated at 3.2 A.  相似文献   

3.
The question of how to design a water-soluble globular protein remains. We report here the synthesis of a native-like and pore-forming small globular protein (SGP, 69 amino acid residues). The protein was designed to have four helices: a Trp-containing short hydrophobic helix in the middle surrounded by three Tyr-containing long basic amphiphilic helices. Size-exclusion chromatography and CD measurements indicated that in buffer solution SGP is monomeric with a 50% helical structure. SGP did not completely denature even at high temperature (90 degrees C) and at relatively high Gu x HCl concentration so that the denaturant concentration at the midpoint of the transition is 5 M. Dye binding studies and fluorescence energy transfer experiments showed that SGP possesses a hydrophobic binding site and its Trp of the central helix is present at a relatively hydrophobic region and accepts the energy from Tyr(s) in other amphiphilic helices, indicating that SGP takes a stable globular-like structure in aqueous solution. From the depth-dependent fluorescent studies using egg PC liposomes containing n-doxyl fatty acids and brominated phospholipid as quenchers, it was found that the hydrophobic central alpha-helix is able to enter spontaneously into the lipid bilayers and the Trp in the central alpha-helix is located at about the middle of the alkyl chain in the outer layer of the phospholipid bilayer. The peptide is also able to increase the membrane permeability with two modes of current (basal current and single ion channel) in planar phospholipid bilayers, indicating the spontaneous insertion of the protein into the lipid bilayer (basal current) and then the formation of a uniform size of channel pore (14 pS). SGP is useful as a basic and starting model to find good amino acid sequences that fold to a desired protein structure and to search translocation mechanisms from aqueous solution into lipid bilayers.  相似文献   

4.
Trichorzianin TA VII, Ac0 U1 A2 A3 U4 J5 Q6 U7 U8 U9 S10 L11 U12 P13 V14 U15 I16 Q17 Q18 Fol19, is a nonadecapeptide member of the peptaibol antibiotics biosynthesized by Trichoderma soil fungi, which is characterized by a high proportion of the alpha, alpha-dialkylated amino acids, alpha-aminoisobutyric acid (Aib, U) and isovaline (Iva, J), an acetylated N-terminus and a C-terminal phenylalaninol (Pheol, Fol). The main interest in such peptides stems from their ability to interact with phospholipid bilayers and form voltage-dependent transmembrane channels in planar lipid bilayers. In order to provide insights into the lipid-peptide interaction promoting the voltage gating, the conformational study of TA VII in the presence of perdeuterated sodium dodecyl sulfate (SDS-d25) micelles has been carried out. 1H sequential assignment have been performed with the use of two-dimensional homo- and -heteronuclear nmr techniques including double quantum filtered correlated spectroscopy, homonuclear Hartmann-Hahn, nuclear Overhauser effect spectroscopy, 1H-13C heteronuclear single quantum correlation, and heteronuclear multiple bond correlation. Conformational parameters, such as 3JNHC alpha H coupling constants, temperature coefficients of amide protons (delta gamma/delta TNH) and quantitative nuclear Overhauser enhancement data, lead to detailed structural information. Ninety-eight three-dimensional structures consistent with the nmr data were generated from 231 interproton distances six phi dihedral angle restraints, using restrained molecular dynamics and energy minimization calculations. The average rms deviation between the 98 refined structures and the energy-minimized average structure is 0.59 A for the backbone atoms. The structure of trichorzianin TA VII associated with SDS micelles, as determined by these methods, is characterized by two right-handed helical segments involving residues 1-8 and 11-19, linked by a beta-turn that leads to an angle about 90 degrees-100 degrees between the two helix axes; residues 18 and 19 at the end of the C-terminal helix exhibit multiple conformations.  相似文献   

5.
The CytA toxin exerts its activity by the formation of pores within target cell membranes. However, the exact mechanism of pore formation and the structural elements that are involved in the toxic activity are yet to be determined. Recently, the structure of the highly similar CytB toxin was solved (Li et al., 1996), and a beta-barrel was suggested as a possible structure of the pores. Due to the similarity between the toxins, the existence and positioning of alpha-helices and beta-sheets in CytA were predicted from the alignment of the sequences. Here peptides corresponding to beta5, beta6, and beta7 strands, to a conserved nonhelical region of the CytA toxin (P149-170), to helices B and D, and to an analogue of helix A were synthesized, fluorescently labeled, and characterized. We found that, unlike helices A and C (Gazit and Shai, 1993), neither the beta-strand peptides nor helix B could interact with lipid membranes, whereas P149-170 and helix D bind the membrane weakly. Membrane permeation experiments suggested that CytA toxin exerts its activity by aggregation of several monomers. To learn about the structural elements that may mediate CytA oligomerization, the ability of the synthetic peptides to interact with membrane-bound CytA was studied. Helices A and C, but not the beta-strands, helix D, or a control peptide, caused a large increase in the fluorescence of membrane-bound fluorescein-labeled CytA, whereas helix B had only a slight effect. Moreover, the addition of rearranged helix A, a peptide with the same composition as helix A, but with only two pairs of amino acids rearranged, did not affect the fluorescence. The addition of unlabeled CytA also caused an increase in the fluorescence intensity, further demonstrating the interaction between CytA monomers within the membrane. Taken together, our results provide further support for the suggestion that the CytA toxin self-assembles within membrane and that helices A and C are major structural elements involved in the membrane interaction and intermolecular assembly of the toxin.  相似文献   

6.
Hemoglobin Catonsville is a mutation of human hemoglobin (an alpha 2 beta 2 tetramer) in which a glutamate residue is inserted into the first turn of a highly conserved 3(10) helix (the C helix) of each alpha subunit. In theory, amino acid insertions (or deletions) in protein helices can be accommodated via two distinct mechanisms. One, termed the register shift mechanism, preserves the geometry of the helix while requiring all of the residues on one flank of the insertion site to rotate by 100 degrees in the case of an alpha helix or by 120 degrees in the case of a 3(10) helix. The other, termed the bulge (or indentation) mechanism, distorts the local geometry of the helix but does not alter the helix register. High-resolution X-ray diffraction analysis of deoxyhemoglobin Catonsville shows that the inserted residue is accommodated as a bulge, demonstrating that this is a viable mechanism. (In contrast, no such evidence is yet available for the register shift mechanism.) More specifically, the insertion converts one turn of the C helix from 3(10) geometry to alpha helix-like geometry, raising the possibility that a common mechanism for accommodating insertions and deletions within helices may involve localized interconversions between 3(10), alpha, and pi helical structures.  相似文献   

7.
The amino-terminal segment of the membrane-anchored subunit of influenza hemagglutinin (HA) plays a crucial role in membrane fusion and, hence, has been termed the fusion peptide. We have studied the secondary structure, orientation, and effects on the bilayer structure of synthetic peptides corresponding to the wild-type and several fusogenic and nonfusogenic mutants with altered N-termini of the influenza HA fusion peptide by fluorescence, circular dichroism, and Fourier transform infrared spectroscopy. All peptides contained segments of alpha-helical and beta-strand conformation. In the wild-type fusion peptide, 40% of all residues were in alpha-secondary and 30% in beta-secondary structures. By comparison, the nonfusogenic peptides exhibited larger beta/alpha secondary structure ratios. The order parameters of the helices and the amide carbonyl groups of the beta-strands of the wild-type fusion peptide were measured separately, based on the infrared dichroism of the respective absorption bands. Order parameters in the range 0.1-0.7 were found for both segments of the wild-type peptide, which indicates that they are most likely aligned at oblique angles to the membrane normal. The nonfusogenic but not the fusogenic peptides induced splitting of the infrared absorption band at 1735 cm(-1), which is assigned to stretching vibrations of the lipid ester carbonyl bond. This splitting, which reports on an alteration of the hydrogen bonds formed between the lipid ester carbonyls and water and/or hydrogen-donating groups of the fusion peptides, correlated with the beta/alpha ratio of the peptides, suggesting that unpaired beta-strands may replace water molecules and hydrogen-bond to the lipid ester carbonyl groups. The profound structural changes induced by single amino acid replacements at the extreme N-terminus of the fusion peptide further suggest that tertiary or quaternary structural interactions may be important when fusion peptides bind to lipid bilayers.  相似文献   

8.
The nicotinic acetylcholine receptor (nAChR) is an integral membrane protein that forms ligand-gated and cation-selective channels. The central pore is lined by a bundle of five approximately parallel M2 helices, one from each subunit. Candidate model structures of the solvated pore region of a homopentameric (alpha7)5 nAChR channel in the open state, and in two possible forms of the closed state, have been studied using molecular dynamics simulations with restraining potentials. It is found that the mobility of the water is substantially lower within the pore than in bulk, and the water molecules become aligned with the M2 helix dipoles. Hydrogen-bonding patterns in the pore, especially around pore-lining charged and hydrophilic residues, and around exposed regions of the helix backbone, have been determined. Initial studies of systems containing both water and sodium ions together within the pore region have also been conducted. A sodium ion has been introduced into the solvated models at various points along the pore axis and its energy profile evaluated. It is found that the ion causes only a local perturbation of the water structure. The results of these calculations have been used to examine the effectiveness of the central ring of leucines as a component of a gate in the closed-channel model.  相似文献   

9.
The antimicrobial peptides magainin 2 and PGLa, discovered in the skin of the African clawed frog, Xenopus laevis, exhibit marked synergism [Westerhoff, H. V., Zasloff, M., Rosner, J. L., Hendler, R. W., de Waal, A., Vaz Gomes, A., Jongsma, A. P. M., Riethorst, A., and Juretic, D., Eur. J. Biochem. 228, 257-264 (1995)], although the mechanism is not yet clear. They are believed to kill bacteria by permeabilizing membranes. In this study, we examined the interactions of these peptides in lipid bilayers. PGLa, like magainin 2, preferentially interacts with acidic lipids, forming an amphipathic helix. The peptide induces the release of a water-soluble dye, calcein, entrapped within liposomes. The coexistence of magainin 2 enhances membrane permeabilization, which is maximal at a 1:1 molar ratio. Fluorescence experiments using L18W-PGLa revealed that both peptides form a stoichiometric 1:1 complex in the membrane phase with an association free energy of -15 kJ/mol. Single amino acid mutations in magainin 2 significantly altered the synergistic activity, suggesting that precise molecular recognition is involved in complex formation. The complex as well as each component peptide form peptide-lipid supramolecular complex pores, which mediate the mutually coupled transbilayer transport of dye, lipid, and the peptide per se. The rate of pore formation rate is in the order complex >/= PGLa > magainin 2, whereas the pore lifetime is in the order magainin 2 > complex > PGLa. Therefore, the synergism is a consequence of the formation of a potent heterosupramolecular complex, which is characterized by fast pore formation and moderate pore stability.  相似文献   

10.
Phospholamban is a small membrane protein which can form cation selective ion channels in lipid bilayers. Each subunit contains a single, largely hydrophobic transmembrane helix. The helices are thought to assemble as a pentameric and approximately parallel bundle surrounding a central pore. A model of this assembly (PDB code IPSL) has been used as the starting point for molecular dynamics (MD) simulations of a system consisting of the pentameric helix bundle, plus 217 water molecules located within and at either mouth of the pore. Interhelix distance restraints were employed to maintain the integrity of the helix bundle during a 500 ps MD simulation. Water molecules within the pore exhibited reduced diffusional and rotational mobility. Interactions between the alpha-helix dipoles and the water dipoles, the latter aligned anti-parallel to the former, contribute to the stability of the system. Analysis of the potential energy of interaction of a K+ ion as it was moved through the pore suggested that unfavourable interactions of the cation with the aligned helix dipoles at the N-terminal mouth were overcome by favourable ion-water interactions. Comparable analysis for a Cl ion revealed that the ion-(pore + water) interactions were unfavourable along the whole of the pore, increasingly so from the N- to the C-terminal mouth. Overall, the interaction energy profiles were consistent with a pore selective for cations over anions. Pore radius profiles were used to predict a channel conductance of 50 to 70 ps in 0.2 M KCl, which compares well with an experimental value of 100 ps.  相似文献   

11.
PMP1 is a 38-residue polypeptide associated with the yeast plasma membrane H(+)-ATPase, found to regulate the enzyme activity. To investigate the molecular basis of the PMP1 biological function, the conformational properties of a synthetic PMP1 fragment, A18-F38, comprising the predicted C-terminal cytoplasmic domain and a part of the transmembrane anchor have been studied by 1H- and 2H-NMR spectroscopies. High resolution 1H-NMR experiments showed that, in deuterated DPC micelles, the A18-G34 segment adopts a well defined helix conformation. Our data suggest that the whole PMP1 molecule forms a unique helix whose axis might be slightly tilted with respect to the bilayer normal. Protonated DPC, DMPC and DMPS were incorporated in deuterated micelles containing the PMP1 fragment for studying lipid-peptide interactions. Unusually strong and selective intermolecular NOEs between lipid chain and peptide side chain protons, especially those of the unique Trp residue, were observed. Solid state 2H-NMR experiments performed on pure deuterated POPC and mixed deuterated POPC:POPS (5:1) bilayers revealed that the PMP1 fragment specifically interacts with negatively charged PS lipids.  相似文献   

12.
Calculations of the ensemble of solution conformations and thermodynamics of an analogue of the C-terminal helix of ribonuclease A (RN24) and of a synthetic, beta-hairpin forming peptide (BH8) are presented. For efficient sampling of conformation space, molecular dynamics simulations with an implicit solvent potential and umbrella sampling of the potential energy are performed. Starting from the fully extended chains, the simulations yield several folding and unfolding transitions between disordered (coil) conformations of the peptides and the "native" state (RN24, helix; BH8, hairpin); the simulations also lead to the occurrence of "misfolded" conformations (RN24, hairpin; BH8, helix). In agreement with experiment, the calculations predict 58% helix for RN24 at 275 K and an antiparallel-beta content of 38% at 275 K for BH8; the calculated probabilities for the misfolded species are 2% or smaller at all temperatures considered (250-1100 K). Good agreement is also shown between the calculated 3JHNalpha spin-spin coupling constants of RN24 and BH8 at 275 K, and those obtained from NMR experiments at the same temperature. From the calculated probabilities of helix (h), beta-hairpin (b), and coil (c), the free energy differences between the structured substates are DeltaGch=Gc-Gh approximately 1 kcal/mol and DeltaGbh>/=1.8 kcal/mol for RN24, and DeltaGcb approximately 0.7 kcal/mol and DeltaGhb>/=2.7 kcal/mol for BH8. The free energy difference between "correctly" folded and misfolded secondary structures are of interest for understanding the alpha to beta transition that is thought to play a role in amyloid fibril formation.  相似文献   

13.
The hypothesis of structural alteration in transmembrane helices for signal transduction process is viewed by molecular dynamics simulation techniques. For the c-erbB-2 transmembrane domain involved in oncogenicity, the occurrence of conformational changes has been previously described as transition from the alpha to pi helix. This dynamical feature is thoroughly analyzed for the wild phenotype and oncogenic sequences from a series of 18 simulations carried out on one nanosecond time scale. We show that these structural events do not depend upon the conditions of simulations like force field or starting helix coordinates. We demonstrate that the oncogenic mutations Val659 Glu, Gln and Asp do not prevent the transition. Furthermore, we show that beta branched residues, in conjunction with Gly residues in the c-erbB-2 sequence, act as destabilizers for the alpha helix structure, pi deformations are tightly related to other local structural motifs found in soluble and membrane proteins. These structural alterations are discussed in term of structure-activity relationships for the c-erbB-2 activating mechanism mediated by transmembrane domain dimerization.  相似文献   

14.
Excitability-inducing molecule (EIM) is a high molecular weight polymeric protein. It is a channel-forming ionophore which can induce action potential in lipid bilayers and lyse red blood cells. It is also a potent mitogen for mouse B lymphocytes. EIM is produced and secreted into a chemically defined medium during the early growth period by Enterobacter cloacae ATCC 961. It is now 6000-fold purified as compared to the original egg white EIM. Production of the active material requires calcium ion. EIM contains 10 to 20% lipid by weight which is primarily composed of fatty acids, with an unsaturated 18-carbon chain. Amino acid analysis shows 18 common amino acids. The maximum specific activity of 18 common amino acids. The maximum specific activity of EIM is associated with the molecular weight of 3.6 x 10(5).  相似文献   

15.
The exchangeable apolipoproteins are important in determining the structure/function properties of lipoproteins. These proteins typically contain varying amounts of amphipathic helices. Five model peptides, 18A, Ac-18A-NH2, Ac-18R-NH2, 37pA, and 37aA, have been designed to investigate variations of the amphipathic alpha-helix structural motif on their lipid-binding properties. These include the 18-residue peptides, 18A and Ac-18A-NH2, examples of class A helices, and Ac-18R-NH2, which has the positions of acidic and basic residues interchanged relative to 18A. Three larger peptides were also studied: 36A, a dimer of 18A, 37pA and 37aA, dimers of 18A coupled by Pro (18A-Pro-18A) and Ala (18A-Ala-18A), respectively. We report here the results of a thermodynamic characterization of the binding properties of these peptides to small unilamellar vesicles of POPC. Partition coefficients, Kp, were determined by fluorescence spectroscopy and binding enthalpies, deltaH, by titration calorimetry. These parameters were used to obtain the free energies, deltaG0, and entropies, deltaS0, of binding. The results of this study indicate Kp values on the order of 10(5), with interactions being enthalpically but not entropically favored in all cases. The presence of positively charged residues at the interface (18A and Ac-18A-NH2) enhances binding but has little effect on the extent of bilayer penetration. The presence of tandem repeats decreases lipid affinities for these small, highly curved bilayers. Our results are consistent with the idea that interaction appears to be confined largely to the surface, with some degree of penetration of the hydrophobic face of the helix into the interior of the bilayer.  相似文献   

16.
Ion channels contain extended columns of water molecules within their transbilayer pores. The dynamic properties of such intrapore water have been shown to differ from those of water in its bulk state. In previous molecular dynamics simulations of two classes of model pore (parallel bundles of Ala20 alpha-helices and antiparallel barrels of Ala10 beta-strands), a substantially reduced translational and rotational mobility of waters was observed within the pore relative to bulk water. Molecular dynamics simulations in the presence of a transpore electrostatic field (i.e., a voltage drop along the pore axis) have been used to estimate the resultant polarization (due to reorientation) of the intrapore water, and hence to determine the local dielectric behavior within the pore. It is shown that the local dielectric constant of water within a pore is reduced for models formed by parallel alpha-helix bundles, but not by those formed by beta-barrels. This result is discussed in the context of electrostatics calculations of ion permeation through channels, and the effect of the local dielectric of water within a helix bundle pore is illustrated with a simple Poisson-Boltzmann calculation.  相似文献   

17.
Very little is known about the folding of proteins within biological membranes. A "two-stage" model has been proposed on thermodynamic grounds for the folding of alpha helical, integral membrane proteins, the first stage of which involves formation of transmembrane alpha helices that are proposed to behave as autonomous folding domains. Here, we investigate alpha helix formation in bacteriorhodopsin and present a time-resolved circular dichroism study of the slow in vitro folding of this protein. We show that, although some of the protein's alpha helices form early, a significant part of the protein's secondary structure appears to form late in the folding process. Over 30 amino acids, equivalent to at least one of bacteriorhodopsin's seven transmembrane segments, slowly fold from disordered structures to alpha helices with an apparent rate constant of about 0.012 s-1 at pH 6 or 0.0077 s-1 at pH 8. This is a rate-limiting step in protein folding, which is dependent on the pH and the composition of the lipid bilayer.  相似文献   

18.
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the alpha2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative alpha2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the alpha3 and alpha4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B alpha2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B alpha2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the alpha2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.  相似文献   

19.
A variety of host L-alanine homo-peptides (to the pentamer) containing one or two spin-labelled TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) residues were synthesized by solution methods and fully characterized. The conformational features of the terminally blocked, doubly spin-labelled TOAC-(Ala)2-TOAC-Ala-pentapeptide were examined in the crystal state by X-ray diffraction and in solution using a combination of techniques (Fourier transform infrared, circular dichroism, cyclic voltammetry and electron spin resonance) in comparison with singly labelled shorter peptides. The 3(10)-helical structure of the pentapeptide, promoted by the two C alpha, alpha-disubstituted glycines under favourable experimental conditions, allows an interaction to take place between the two nitroxide TOAC side chains spaced by one turn of the helix. Taken together, these results suggest that TOAC is an excellent probe for exploring bends and helices in doubly labelled peptides.  相似文献   

20.
The concepts of hydrophobicity and hydrophobic moments have been applied in attempts to predict membrane protein secondary and tertiary structure. The current paper uses molecular dynamics computer calculations of individual bacteriorhodopsin helices in explicit dimyristoylphosphatidylcholine bilayers to examine the atomic basis of these approaches. The results suggest that the types of interactions between a particular amino acid and the surrounding bilayer depend on the position and type of the amino acid. In particular, aromatic residues are seen to interact favorably at the interface region. Analysis of the trajectories in terms of hydrophobic moments suggests the presence of a particular face that prefers lipid. The results of these simulations may be used to improve secondary structure prediction methods and to provide further insights into the two-stage model of protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号