首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Four smoked fish processing plants were used as a model system to characterize Listeria monocytogenes contamination patterns in ready-to-eat food production environments. Each of the four plants was sampled monthly for approximately 1 year. At each sampling, four to six raw fish and four to six finished product samples were collected from corresponding lots. In addition, 12 to 14 environmental sponge samples were collected several hours after the start of production at sites selected as being likely contamination sources. A total of 234 raw fish, 233 finished products, and 553 environmental samples were tested. Presumptive Listeria spp. were isolated from 16.7% of the raw fish samples, 9.0% of the finished product samples, and 27.3% of the environmental samples. L. monocytogenes was isolated from 3.8% of the raw fish samples (0 to 10%, depending on the plant), 1.3% of the finished product samples (0 to 3.3%), and 12.8% of the environmental samples (0 to 29.8%). Among the environmental samples, L. monocytogenes was found in 23.7% of the samples taken from drains, 4.8% of the samples taken from food contact surfaces, 10.4% of the samples taken from employee contact surfaces (aprons, hands, and door handles), and 12.3% of the samples taken from other nonfood contact surfaces. Listeria spp. were isolated from environmental samples in each of the four plants, whereas L. monocytogenes was not found in any of the environmental samples from one plant. Overall, the L. monocytogenes prevalence in the plant environment showed a statistically significant (P < 0.0001) positive relationship with the prevalence of this organism in finished product samples. Automated EcoRI ribotyping differentiated 15 ribotypes among the 83 L. monocytogenes isolates. For each of the three plants with L. monocytogenes-positive environmental samples, one or two ribotypes seemed to persist in the plant environment during the study period. In one plant, a specific L. monocytogenes ribotype represented 44% of the L. monocytogenes-positive environmental samples and was also responsible for one of the two finished product positives found in this plant. In another plant, a specific L. monocytogenes ribotype persisted in the raw fish handling area. However, this ribotype was never isolated from the finished product area in this plant, indicating that this operation has achieved effective separation of raw and finished product areas. Molecular subtyping methods can help identify plant-specific L. monocytogenes contamination routes and thus provide the knowledge needed to implement improved L. monocytogenes control strategies.  相似文献   

2.
A total of 257 raw fish samples at two different sites were examined for the presence of Listeria monocytogenes. The prevalence of L. monocytogenes was 4%. From 11 positive samples, nine different L. monocytogenes pulsed-field gel electrophoresis genotypes were recovered. From nine pulsotypes recovered from raw fish and 32 pulsotypes shown by 101 fish product isolates, two raw fish and fish product pulsotypes were indistinguishable from each other. Although the prevalence of L. monocytogenes in raw fish is low, the range of L. monocytogenes strains entering the processing plant in large amounts of raw material is wide. This indicates that the raw material is an important initial contamination source of L. monocytogenes in fish processing plants. This postulation is supported by the identical pulsotypes recovered from both raw and processed fish. Some L. monocytogenes strains entering a plant may thus contaminate and persist in the processing environment, causing recurrent contamination of the final products via processing machines.  相似文献   

3.
Four ready-to-eat smoked fish plants were monitored for 2 years to study Listeria contamination patterns and the impact of plant-specific Listeria control strategies, including employee training and targeted sanitation procedures, on Listeria contamination patterns. Samples from the processing plant environment and from raw and finished product were collected monthly and tested for Listeria spp. and Listeria monocytogenes. Before implementation of intervention strategies, 19.2% of raw product samples (n = 276), 8.7% of finished product samples (n = 275), and 26.1% of environmental samples (n = 617) tested positive for Listeria spp. During and after implementation of Listeria control strategies, 19.0% of raw product samples (n = 242), 7.0% of finished product samples (n = 244), and 19.5% of environmental samples (n = 527) were positive for Listeria spp. In one of the four fish plants (plant 4), no environmental samples were positive for L. monocytogenes, and this plant was thus excluded from statistical analyses. Based on data pooled from plants 1, 2, and 3, environmental Listeria spp. prevalence was significantly lower (P < 0.05) for nonfood contact surfaces and the finished product area and for the overall core environmental samples after implementation of control strategies. Listeria prevalence for floor drains was similar before and after implementation of controls (49.6 and 54.2%, respectively). Regression analysis revealed a significant positive relationship (P < 0.05) between L. monocytogenes prevalence in the environment and in finished products before implementation of control strategies; however, this relationship was absolved by implementation of Listeria control strategies. Molecular subtyping (EcoRI ribotyping) revealed that specific L. monocytogenes ribotypes persisted in three processing plants over time. These persistent ribotypes were responsible for all six finished product contamination events detected in plant 1. Ribotype data also indicated that incoming raw material is only rarely a direct source of finished product contamination. While these data indicate that plant-specific Listeria control strategies can reduce cross-contamination and prevalence of Listeria spp. and L. monocytogenes in the plant environment, elimination of persistent L. monocytogenes strains remains a considerable challenge.  相似文献   

4.
The aim of the present study was to investigate the sources of Listeria monocytogenes contamination in a cold smoked salmon processing environment over a period of six years (2003-2008). A total of 170 samples of raw material, semi-processed, final product and processing surfaces at different production stages were tested for the presence of L. monocytogenes. The L. monocytogenes isolates were characterized by multiplex PCR for the analysis of virulence factors and for serogrouping. The routes of contamination over the six year period were traced by PFGE. L. monocytogenes was isolated from 24% of the raw salmon samples, 14% of the semi-processed products and 12% of the final products. Among the environmental samples, 16% were positive for L. monocytogenes. Serotyping yielded three serovars: 1/2a, 1/2b, 4b, with the majority belonging to serovars 1/2a (46%) and 1/2b (39%). PFGE yielded 14 profiles: two of them were repeatedly isolated in 2005-2006 and in 2007-2008 mainly from the processing environment and final products but also from raw materials. The results of this longitudinal study highlighted that contamination of smoked salmon occurs mainly during processing rather than originating from raw materials, even if raw fish can be a contamination source of the working environment. Molecular subtyping is critical for the identification of the contamination routes of L. monocytogenes and its niches into the production plant when control strategies must be implemented with the aim to reduce its prevalence during manufacturing.  相似文献   

5.
Listeria monocytogenes contamination of ready-to-eat food products such as cold-smoked fish is often caused by pathogen subtypes persisting in food-processing environments. The purpose of the present study was to determine whether these L. monocytogenes subtypes can be found in the outside environment, i.e., outside food processing plants, and whether they survive better in the aquatic environment than do other strains. A total of 400 samples were collected from the outside environment, fish slaughterhouses, fish farms, and a smokehouse. L. monocytogenes was not detected in a freshwater stream, but prevalence increased with the degree of human activity: 2% in seawater fish farms, 10% in freshwater fish farms, 16% in fish slaughterhouses, and 68% in a fish smokehouse. The fish farms and slaughterhouses processed Danish rainbow trout, whereas the smokehouse was used for farm-raised Norwegian salmon. No variation with season was observed. Inside the processing plants, the pattern of randomly amplified polymorphic DNA (RAPD) types was homogeneous, but greater diversity existed among isolates from the outside environments. The RAPD type dominating the inside of the fish smokehouse was found only sporadically in outside environments. To examine survival in different environments, L. monocytogenes or Listeria innocua strains were inoculated into freshwater and saltwater microcosms. Pathogen counts decreased over time in Instant Ocean and remained constant in phosphate-buffered saline. In contrast, counts decreased rapidly in natural seawater and fresh water. The count reduction was much slower when the natural waters were autoclaved or filtered (0.2-microm pore size), indicating that the pathogen reduction in natural waters was attributable to a biological mechanism, e.g., protozoan grazing. A low prevalence of L. monocytogenes was found in the outside environment, and the bacteria did not survive well in natural environments. Therefore, L. monocytogenes in the outer environment associated with Danish fish processing is probably of minor importance to the environment inside a fish production plant.  相似文献   

6.
The sites of Listeria monocytogenes contamination in three cold-smoked salmon (Salmo salar) processing plants were detected by sampling salmon and the plant's environment and equipment at different production stages. Of the 141 samples collected from three processing plants, 59 (42%) were contaminated with L. monocytogenes. The rates of contamination varied as to the plant and the sample source. L. monocytogenes isolates from 17 various contaminated seafood products (fresh, frozen and smoked fishes, cooked mussels) were also studied. A total of 155 isolates from the three plants and the various seafoods were characterized by genomic macrorestriction using ApaI and SmaI with pulsed-field gel electrophoresis (PFGE) and 82 isolates were serotyped. Macrorestriction yielded 20 pulsotypes and serotyping yielded four serovars: 1/2a, 1/2b, 1/2c, 4b (or e), with 77 (93%) belonging to serovar 1/2a. One clone of L. monocvtogenes predominated and persisted in plant I and was the only pulsotype detected in the final product although it was not isolated from raw salmon. No L. monocytogenes was detected in the smoked skinned salmon processed in plant II, even though 87% of the raw salmon was contaminated. All the smoked salmon samples collected in plant III were contaminated with a unique clone of L. monocytogenes, which may have occurred during slicing. In the three plants, the contamination of final products did not seem to originate from the L. monocytogenes present on raw salmon, but from the processing environment.  相似文献   

7.
This study focused on the ecology of Listeria monocytogenes in a fish farm by following the changes in its occurrence in different types of samples for a three year period. In addition, L. monocytogenes isolates from different seafood industry areas were compared with pulsed field gel electrophoresis (PFGE) typing to discover possible associations between primary production, further processing and final products. Weather conditions were found to have a strong influence on the probability of finding Listeria spp. in a fish farm environment. The number of samples contaminated with Listeria spp. was typically bigger after rainy periods. Brook and river waters as well as other runoff waters seemed to be the main contamination source at the farm studied. The farmed fish originally found to carry L. monocytogenes become gradually Listeria free. The time needed for the purification of the fish was several months. The sea bottom soil samples were the ones that preserved the L. monocytogenes contamination the longest time. It can be stated that the fish and fish farm equipment studied did not spread listeria contamination. On the contrary, they were found to suffer from listeria contamination coming from outside sources like the brook water. There was a wide range of different L. monocytogenes PFGE-pulsotypes (30) found at 15 Finnish fish farms and fish processing factories. L. monocytogenes isolates from the final products often belonged to the same pulsotypes as did the isolates from the processing environment as well as from the raw fish. This suggests that, in addition to the fish processing factory environment, the fish raw materials are important sources of L. monocytogenes contamination in final products.  相似文献   

8.
In this study, Listeria monocytogenes contamination in a cold-smoked fish processing plant in Osaka, Japan, was examined from 2002 to 2004. A total of 430 samples were collected and divided into five categories: raw fish, materials during processing, processing equipment, environment, and finished products. A total of 59 finished products were examined throughout this study. L. monocytogenes was isolated from four of these samples during summer and autumn but was not found during winter or spring. During the warmer seasons, L. monocytogenes was more prevalent on processing equipment, especially slicing machines (8 of 54 samples in summer and autumn versus 1 of 50 samples in winter and spring). L. monocytogenes was not detected on whole skins removed from 23 frozen raw fish. L. monocytogenes strains isolated from 56 samples were characterized by serotyping, pulsed-field gel electrophoresis, and three PCR-based methods. Seventy-seven L. monocytogenes strains were recognized as contaminants of the samples: 2 distinguishable strains were identified in each of 13 samples, 3 strains were identified in 2 samples, 5 strains were identified in 1 sample, and the other 40 strains were identified in 40 samples. Combining the results from these techniques, 77 strains were classified into 13 different types. Three of these types prevailed throughout the plant, and two of the three were also isolated from final products. The DNA subtype found in the product was also found on the slicing machines. Our findings suggest that the slicing machines at this plant were the source of the product contamination. Implementing an appropriate cleaning regime for the slicing machines was effective in preventing contamination.  相似文献   

9.
《Food microbiology》1994,11(4):309-316
Three Swiss fish farms, farming rainbow trout (Oncorhynchus mykiss), and their affiliated smoking plants were analyzed for the presence of Listeria spp. 590 samples were collected from the farming environment (raceway water, sludge), faecal content and skin of the fish, fish during processing, and the processing environment.Listeria spp. were found at prevalences of 2·3% in plant A, 31·6% in plant B (mainly L. monocytogenes), and 13·8% in plant C (mainly L. innocua). This high contamination rate in plant B may be explained by the following facts: (i) farm B uses river water flowing through agricultural land; (ii) plant B rears fish in earth ponds instead of concrete ponds or raceways; (iii) fish from farm B had not been denied feed prior to slaughter; and (iv) total lack of regular mechanical and chemical cleaning in the fish farm B and processing plant B.In all three plants samples taken after smoking but before packaging did not contain Listeria spp., although in plant B and C the raw fish was contaminated. Hygienic defaults during packaging can lead to contaminated ready-to-eat products, detected in plant B (L. monocytogenes) and plant C (L. innocua) with one sample each. To minimize a possible health hazard to the consumer, it is of great importance to prevent postprocessing contamination of smoked fish.Finally, means of preventing Listeria contamination during farming, slaughtering, processing and storage are suggested.  相似文献   

10.
Listeriosis is a foodborne disease caused by the bacterium Listeria monocytogenes. The food industry and government agencies devote considerable resources to reducing contamination of ready-to-eat foods with L. monocytogenes. Because inactivation treatments can effectively eliminate L. monocytogenes present on raw materials, postprocessing cross-contamination from the processing plant environment appears to be responsible for most L. monocytogenes food contamination events. An improved understanding of cross-contamination pathways is critical to preventing L. monocytogenes contamination. Therefore, a plant-specific mathematical model of L. monocytogenes cross-contamination was developed, which described the transmission of L. monocytogenes contamination among food, food contact surfaces, employees' gloves, and the environment. A smoked fish processing plant was used as a model system. The model estimated that 10.7% (5th and 95th percentile, 0.05% and 22.3%, respectively) of food products in a lot are likely to be contaminated with L. monocytogenes. Sensitivity analysis identified the most significant input parameters as the frequency with which employees' gloves contact food and food contact surfaces, and the frequency of changing gloves. Scenario analysis indicated that the greatest reduction of the within-lot prevalence of contaminated food products can be achieved if the raw material entering the plant is free of contamination. Zero contamination of food products in a lot was possible but rare. This model could be used in a risk assessment to quantify the potential public health benefits of in-plant control strategies to reduce cross-contamination.  相似文献   

11.
Two commercial polymerase chain reaction (PCR)-based Listeria detection systems, the BAX for Screening/Listeria monocytogenes and the BAX for Screening/Genus Listeria, and a culture-based detection system, the Biosynth L. monocytogenes Detection System (LMDS), were evaluated for their ability to detect L. monocytogenes and Listeria spp. in raw ingredients and the processing environment. For detection of L. monocytogenes from raw fish, enrichment was performed in Listeria enrichment broth (LEB), followed by plating on both Oxford agar and LMDS L. monocytogenes plating medium (LMPM). Detection of Listeria and L. monocytogenes from environmental samples was performed using LMDS enrichment medium, followed by plating on both Oxford agar and LMPM. A total of 512 environmental samples and 315 raw fish were taken from two smoked fish processing facilities and screened using these molecular and cultural Listeria detection methods. The BAX for Screening/L monocytogenes was used to screen raw fish and was 84.8% sensitive and 100% specific. The BAX for Screening/Genus Listeria was evaluated on environmental samples and had 94.7% sensitivity and 97.4% specificity. In conjunction with enrichment in LEB, LMPM had a sensitivity and specificity for detection of L. monocytogenes from raw fish of 97.8 and 100%, respectively. Use of LMDS enrichment medium followed by plating on LMPM allowed for sensitivity and specificity rates of 94.8 and 100%, respectively, for detection of L. monocytogenes from environmental samples. We conclude that both the BAX systems and the use of LMPM allow for reliable and rapid detection of Listeria spp. and L. monocytogenes. While the BAX systems provide screening results in about 3 days, the use of LMPM allows for L. monocytogenes isolation in 4 to 5 days.  相似文献   

12.
The aim of this study was to determine the transmission routs of Listeria spp. in dairy farms manufacturing fresh cheese made from ovine and caprine raw milk and to evaluate the impact of Listeria monocytogenes mastitis on raw milk contamination. Overall, 5,799 samples, including 835 environmental samples, 230 milk and milk product samples, and 4,734 aseptic half-udder foremilk samples were collected from 53 dairy farms in the dairy intensive area of Lower Austria. Farms were selected for the study because raw milk was processed to cheese that was sold directly to consumers. A total of 153 samples were positive for Listeria spp., yielding an overall prevalence of 2.6%; L. monocytogenes was found in 0.9% of the samples. Bulk tank milk, cheese, and half-udder samples were negative for Listeria spp. Because none of the sheep and goats tested positive from udder samples, L. monocytogenes mastitis was excluded as a significant source of raw milk contamination. L. monocytogenes was detected at 30.2% of all inspected farms. Swab samples from working boots and fecal samples had a significantly higher overall prevalence (P < 0.001) of L. monocytogenes (15.7 and 13.0%, respectively) than did swab samples from the milk processing environment (7.9%). A significant correlation was found between the prevalence of L. monocytogenes in the animal and in the milk processing environment and the silage feeding practices. Isolation of L. monocytogenes was three to seven times more likely from farms where silage was fed to animals throughout the year than from farms where silage was not fed to the animals.  相似文献   

13.
Listeria spp. and Listeria monocytogenes contamination of cold-smoked salmon (n=125) and its processing environment (n=522) were evaluated during surveys conducted in 1997-1998 and 2001 as well as in samples of final products analysed in 2001. The overall frequencies of Listeria spp. and L. monocytogenes in samples from all sources were 15.1% and 11.3%, respectively, but the incidence of L. monocytogenes in cold-smoked salmon final products was only 4%. A total of 201 L. monocytogenes isolates were characterised by Pulsed-Field Gel Electrophoresis (PFGE) in order to trace L. monocytogenes contamination in the processing plants. The combination of AscI and ApaI macrorestriction patterns yielded 24 different pulsotypes in 6 plants. One pulsotype observed by AscI restriction digestion comprised 148 of the 167 typed isolates from two processing plants. Two other pulsotypes predominated in samples from raw material, processing environments and final products. The results indicate that raw material, floors, and drains are potential sources of the L. monocytogenes found on cold-smoked salmon products. This highlights the need to readdress the design and cleaning of processing plants and equipment, and staff behavior. Hindering the introduction into and spread of the organism through the processing environment is necessary to avoid jeopardizing safety of the final product.  相似文献   

14.
In British Columbia (BC), Canada, food processing facilities licensed under provincial authority are not required to sample for Listeria monocytogenes in food products or processing environments. In 2009, we conducted a survey of dairy, fish, and meat facilities under BC authority to estimate the prevalence of Listeria spp. and L. monocytogenes in ready-to-eat (RTE) foods and production environments. From August to October, 250 RTE food samples and 258 swabs from the food processing environments of 43 facilities were collected. Standard culture methods were applied to both food samples and swabs. Of swabs collected from all 258 environmental surfaces, 15% were positive for Listeria spp. Significantly (P, 0.001) more fish facilities than dairy and meat facilities had food contact surfaces contaminated with Listeria spp. L. monocytogenes was found in RTE foods from fish facilities alone (5 of 12); in all five of the fish facilities with contaminated product, one or more environmental swabs were also positive for L. monocytogenes. The results suggest that while control of L. monocytogenes in BC-inspected dairy and meat facilities is effective in limiting food contamination, there is a need for provincial inspectors to initiate improved monitoring and management of contamination by L. monocytogenes in RTE fish processing facilities.  相似文献   

15.
Contamination patterns of Listeria monocytogenes were studied in a cold-smoked pork processing plant to identify the sources and possible reasons for the contamination. Environmental sampling combined with pulsed-field gel electrophoresis (PFGE) subtyping and serotyping were applied to investigate the genetic diversity of L. monocytogenes in the plant environment and ready-to-eat (RTE) cold-smoked pork products. A total of 183 samples were collected for contamination analyses, including samples of the product at different stages during manufacture (n = 136) and environmental samples (n = 47) in 2009. L. monocytogenes isolates, previously recovered from 73 RTE cold-smoked pork samples and collected from the same meat processing plant in 2004, were included in this study. The brining machine and personnel working with brining procedures were the most contaminated places with L. monocytogenes. The overall prevalence of L. monocytogenes in raw pork (18%) increased to 60% after the brining injections. The brining machine harbored six different PFGE types belonging to serotypes 1/2a, 1/2c, 4b, and 4d, which were found on the feeding teeth, smooth surfaces, and spaces of the machine, thus potentially facilitating dissemination of L. monocytogenes contamination. Two PFGE types (2 and 8) belonging to serotypes 1/2a and 1/2c were recovered from RTE cold-smoked pork collected in 2004, and from surfaces of the brining machine sampled in 2009, and may indicate the presence of persistent L. monocytogenes strains in the plant. Due to poor hygiene design, removal of the brining machine from the production of cold-smoked meat products should be considered to reduce L. monocytogenes contamination in the finished products.  相似文献   

16.
Two ready-to-eat crawfish processing plants were monitored for 2 years to study the impact of Listeria control strategies, including employee training and targeted sanitation procedures, on Listeria contamination. Environmental, raw material, and finished product samples were collected weekly during the main processing months (April to June) and tested for Listeria spp. and Listeria monocytogenes. Before implementation of control strategies (year 1), the two processing plants showed Listeria spp. prevalences of 29.5% (n = 78) in raw, whole crawfish, 5.2% (n = 155) in the processing plant environment, and 0% (n = 78) in finished products. In year 2, after plant-specific Listeria control strategies were implemented, Listeria spp. prevalence increased in raw crawfish (57.5%, n = 101), in the processing plant environment (10.8%, n = 204), and in the finished product (1.0%, n = 102). Statistical analysis showed a significant increase in Listeria spp. prevalence (P < 0.0001) and a borderline nonsignificant increase in L. monocytogenes prevalence (P = 0.097) on raw material in year 2. Borderline nonsignificant increases were also observed for Listeria spp. prevalence in environmental samples (P = 0.082). Our data showed that Listeria spp. prevalence in raw crawfish can vary significantly among seasons. However, the increased contamination prevalence for raw materials only resulted in a limited Listeria prevalence increase for the processing plant environment with extremely low levels of finished product contamination. Heat treatment of raw materials combined with Listeria control strategies to prevent cross-contamination thus appears to be effective in achieving low levels of finished product contamination, even with Listeria spp. prevalences for raw crawfish of more than 50%.  相似文献   

17.
The foodborne pathogen Listeria monocytogenes represents a major concern to the food industry and particularly to producers of ready-to-eat (RTE) foods because of the severity of human listeriosis infections and because of the ubiquitous nature of this organism. Although several studies on the prevalence and sources of L monocytogenes in various RTE seafoods have been conducted, limited information is available on the presence and potential sources of this organism in RTE crawfish products. We thus monitored the presence of L monocytogenes and other Listeria spp. in the processing environment, in raw, whole crawfish, and in cooked crawfish meat from two processing plants. Samples were collected from the two plants throughout one crawfish season (April to June 2001) at 5 and 8 separate visits, respectively. At each visit, 6 raw, whole crawfish, 6 finished product samples (crawfish meat), and 14 mid- or end-of-processing environmental sponge samples were collected and tested for L. monocytogenes and Listeria spp. Of the 337 samples tested, 31 contained Listeria spp. Although Listeria innocua was the predominant Listeria spp. found (20 samples), four samples were positive for L monocytogenes. L. monocytogenes was detected in three raw material samples and in one environmental sample. Listeria spp. were found in 29.5% of raw, whole crawfish (n = 78) and in 4.4% of environmental samples (n = 181) but in none of the finished product samples. Among the environmental samples, Listeria spp. were found in 15.4% of the drains (n = 39) and in 5.1% of the employee contact surfaces (gloves and aprons) (n = 39) but in none of the samples from food contact surfaces. Even though a high prevalence of Listeria spp. was detected on raw materials, it appears that the heat treatment during the processing of crawfish and the practices preventing postprocessing recontamination can significantly reduce Listeria contamination of RTE crawfish meat.  相似文献   

18.
One hundred and ten samples of ready-to-eat, vacuum-packed, smoked and cold-salted fish products were collected from retail outlets in southern Finland during 1996 for examination of the occurrence and level of Listeria monocytogenes. The samples originated from 12 producers. Positive samples with levels exceeding 100 CFU/g were encountered mainly in one of the producers (no. 8). Therefore, 200 samples from the plant and the products of this producer were studied during August-September 1996 and May-September 1997, as well as 55 samples from the six fish farms providing raw material fish to this plant, during September 1997-January 1998. The isolates were characterised by serotyping and pulsed-field gel electrophoresis (PFGE). L. monocytogenes was isolated in 20% (22/110) of the samples from the retail market, originating from 6 producers. Ten of these positive samples contained L. monocytogenes at > 100 CFU/g (maximum 1.37 X 10(4) CFU/g). Seventeen percent (5/30) of cold-smoked and 50% (16/32) of cold-salted rainbow trout samples were contaminated. Only one hot-smoked fish product (2%) was found to be positive by enrichment. Nineteen (86%) of the strains isolated from the retail samples belonged to serovar 1/2a and three (14%) to serovar 4b. In further studies the production line of plant no. 8 was found to be contaminated. All of isolates from up until autumn, 1997 both the products and the production plant were serovar 1/2a; thereafter one strain of 4b and one of 1/2 (H-antigen untypeable) were isolated from the plant. The samples from raw material fish were all negative for L. monocytogenes. The samples from retail market fell into seven PFGE types. Five and nine PFGE types, respectively, were found from the products and the plant of producer no. 8. PFGE type A was detected from the retail products of four producers and was also dominant among the isolates from production plant no. 8. PFGE type A was the only one found repeatedly from skinning, salting and slicing units as well as from products throughout the whole period. PFGE proved to be a powerful tool for studying contamination points and routes in the production plant. The measures based on hazard analysis critical control points (HACCP) program resulted in L. monocytogenes negative samples at production plant no. 8 from the beginning of January 1998.  相似文献   

19.
An understanding of Listeria transmission and contamination patterns in processing environments of ready-to-eat foods is critical for improving control of Listeria monocytogenes. A cold-smoked fish processing operation was the site used to study variability in Listeria contamination in a processing environment associated with a ready-to-eat food product throughout one production week (five consecutive days). Intensive testing was conducted on finished products and environmental samples collected at the beginning, middle, and end of each working day. A total of 20 finished products and 22 to 36 environmental samples were collected at each sampling time, and an additional 12 environmental samples were collected on days 4 and 5. Overall, a total of 782 samples, 300 finished products and 482 environmental samples, were tested. All samples were collected from processing steps after smoking, including skinning, trimming, slicing, staging, and packing. A total of 28 finished and 57 environmental samples (9.3 and 11.8%, respectively) were positive for Listeria spp. (including 1 and 5 samples positive for L. monocytogenes, respectively). DNA sequencing of the sigB gene allowed differentiation of eight Listeria subtypes. Listeria prevalence varied significantly between days, and a high prevalence in both environmental samples and finished products on day 3 was likely associated with a point source contamination event by a single Listeria welshimeri subtype. There were no consistent differences in Listeria prevalence among samples collected from the beginning, middle, and end of the production day, but subtype data often revealed unique contamination patterns for samples collected at different times of a given day. Listeria contamination patterns and prevalences were highly variable between days and within a given day. These findings indicate that chance events play an important role in the contamination of finished products, thus complicating efforts to define Listeria transmission patterns in processing environments associated with ready-to-eat foods.  相似文献   

20.
Samples from environmental sites and raw product in a chicken further processing plant were collected every 6 weeks for 12 months. Each sample site was examined before and after a complete production shift. All samples were examined for the presence of Listeria monocytogenes, which was detected in floor drains on the raw product side of the plant preoperation and in drains on both raw and cooked sides following 8 h of processing operation. L. monocytogenes also was detected in raw product and once in fully cooked product but never on cooked product contact surfaces. One hundred sixty-one isolates were collected from 75 positive samples. All isolates were subtyped using a sequence-based method, and 14 unique subtypes were detected through the course of the study. Four of these types were found repeatedly and appeared to be resident in the plant. Three of the four resident strains were detected on raw product at some point during the year-long study, suggesting that raw product may be one source of L. monocytogenes in the processing plant environment. These data highlight the need for research to investigate why some types of L. monocytogenes persist in a processing plant environment but others do not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号