共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
C语言程序代码设计中可能会出现词法缺陷、逻辑缺陷、语法缺陷,在传统模式下主要由程序开发人员根据电子集成驱动器(Integrated Drive Electronics,IDE)编程工具、GNU编译器套件(GNU Compiler Collection,GCC)编译结果检查代码中的错误。研究设计了一种可自动检测代码缺陷的综合管理系统,其核心组成部分为知识库和代码缺陷分析器。利用GCC、开源的代码检测软件、正则表达式匹配错误模式,出具评价报告,并向编程者推荐具有针对性的学习内容,以纠正其错误的编程知识和编程习惯。 相似文献
3.
4.
Scala源自瑞士洛桑联邦理工学院由Martin Odersky教授领导的编程方法实验室,是一门能运行在JVM或.Net上的编程语言。自2003年底发布1.0版本至今已经过去近5年时间,但直到最近一年来才被越来越多的人关注。 相似文献
5.
随着《愤怒的小鸟》这款游戏的不断更新,许多开发者也打起了“抄袭”的主意。跟我同办公室的一个刚学编程的哥们小王某日自言自语道:“我到底什么时候才能‘开花’出自己的《愤怒的小鸟》呢?”恰好我从他身边路过,听见了这话,对他说:“这还不简单,跟我来,哥教你不用代码做‘小鸟’!” 相似文献
6.
研究了在Linux环境下构建高性能服务器的关键技术,Reactor,Proactor事件处理模式,处理并发访问量的并发模式,考虑到现代硬件技术的发展,以空间换时间的思想构建高性能服务器,在理论研究的基础上,最后在Linux环境下设计了一个Web服务器,构建过程中充分利用了研究的高性能知识,并通过压力测试进行仿真验证,并分析仿真数据,证明构建的服务器是可以承受一定的高并发访问的。 相似文献
7.
8.
本文在虚拟计算环境之上,研究支持具有自主能力、高并发的新型互联网应用开发方法,在已有的基于进程、面向并发的编程模型中引入实体建模机制,扩展出一种兼具进程和自主并发实体的程序设计模型ConEntity,并给出了形式化定义和描述.ConEntity模型具有表达性、并发性和可伸缩性的特点,能对虚拟计算环境资源高效、透明访问.通过扩展Erlang/OTP将其实现为Erlang语言设施UniAgent.本文的模型为在虚拟计算环境上快速直接构建具有自主、高并发能力实体的新型互联网应用提供了模型和语言上的支持. 相似文献
9.
10.
11.
Daniel Goodman Behram KhanAuthor VitaeSalman KhanAuthor Vitae Mikel LujánAuthor VitaeIan WatsonAuthor Vitae 《Journal of Parallel and Distributed Computing》2013
Transactional memory is an alternative to locks for handling concurrency in multi-threaded environments. Instead of providing critical regions that only one thread can enter at a time, transactional memory records sufficient information to detect and correct for conflicts if they occur. This paper surveys the range of options for implementing software transactional memory in Scala. Where possible, we provide references to implementations that instantiate each technique. As part of this survey, we document for the first time several techniques developed in the implementation of Manchester University Transactions for Scala. We order the implementation techniques on a scale moving from the least to the most invasive in terms of modifications to the compilation and runtime environment. This shows that, while the less invasive options are easier to implement and more common, they are more verbose and invasive in the codes using them, often requiring changes to the syntax and program structure throughout the code. 相似文献
12.
13.
There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer.In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implement our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM. 相似文献
14.
15.
16.
Today, there's significant interest in functional languages and frameworks that fit the Web better than imperative languages. We explore Scala, an OO-functional language on the Java virtual machine, and Lift, a framework implemented on Scala's functional features. The Scala language offers functional programming features and asynchronous message-passing concurrency alongside a statically typed model. Lift exploits this model to offer secure, higher-level abstractions to Web developers. 相似文献
17.
Social media services, such as Twitter, enable commercial businesses to participate actively in online word-of-mouth communication.
In this project, we examined the potential influences of business engagement in online word-of-mouth communication on the
level of consumers’ engagement and investigated the trajectories of a business’ online word-of-mouth message diffusion in
the Twitter community. We used path analysis to examine 164,478 tweets from 96,725 individual Twitter users with regards to
nine brands during a 5-week study period. We operationalized business engagement as the amount of online word-of-mouth messages
from brand and the number of consumers the brand follows. We operationalized consumers’ engagement as the number of online
word-of-mouth messages from consumers both connecting to the brand and having no connection with the brand as well as the
number of consumers following the brand. We concluded that the business engagement on Twitter relates directly to consumers’
engagement with online word-of-mouth communication. In addition, retweeting, as an explicit way to show consumers’ response
to business engagement, indicates that the influence only reaches consumers with a second-degree relationship to the brand
and that the life cycle of a tweet is generally 1.5 to 4 hours at most. Our research has critical implications in terms of
advancing the understanding of the business’s role in the online word-of-mouth communication and bringing insight to the analytics
of social networks and online word-of-mouth message diffusion patterns. 相似文献
18.
19.
为解决传统用于文本分类等时序性问题的循环神经网络无法留住长远记忆及模型框架复杂的问题,提出一种基于序列卷积神经网络的分类模型。利用卷积的思想处理时序性问题,将因果卷积和扩张卷积结合作为卷积层来保证网络具有足够大的感受野,应用残差模块和批处理加深神经网络并消除层数增加误差增大和模型难训练的问题,用卷积层代替全连接层以改善网络特征选取的局限性。实验结果表明,序列卷积分类模型用于Twitter情感分类任务中可获得更优的分类效果,验证了卷积网络的思想可以处理时序性问题。 相似文献
20.
Ruifang He Yang Liu Guangchuan Yu Jiliang Tang Qinghua Hu Jianwu Dang 《World Wide Web》2017,20(2):267-290
Twitter is one of the most popular social media platforms for online users to create and share information. Tweets are short, informal, and large-scale, which makes it difficult for online users to find reliable and useful information, arising the problem of Twitter summarization. On the one hand, tweets are short and highly unstructured, which makes traditional document summarization methods difficult to handle Twitter data. On the other hand, Twitter provides rich social-temporal context beyond texts, bringing about new opportunities. In this paper, we investigate how to exploit social-temporal context for Twitter summarization. In particular, we provide a methodology to model temporal context globally and locally, and propose a novel unsupervised summarization framework with social-temporal context for Twitter data. To assess the proposed framework, we manually label a real-world Twitter dataset. Experimental results from the dataset demonstrate the importance of social-temporal context in Twitter summarization. 相似文献