首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been demonstrated that turbo codes substantially outperform other codes, e.g., convolutional codes, both in the non-fading additive white Gaussian noise (AWGN) channel as well as multiple-transmit and multiple-receive antenna fading channels. Moreover, it has also been reported that turbo codes perform very well in fast fading channels, but perform somewhat poorly on slow and block fading channels of which the broadband fixed wireless access (FWA) channel is an example. In this paper, we thoroughly compare the performance of turbo-coded and convolutional-coded broadband FWA systems both with and without antenna diversity under the condition of identical complexity for a variety of decoding algorithms. In particular, we derive mathematical expressions to characterize the complexity of turbo decoding based on state-of-the-art Log-MAP and Max-Log-MAP algorithms as well as convolutional decoding based on the Viterbi algorithm in terms of the number of equivalent addition operations. Simulation results show that turbo codes do not offer any performance advantage over convolutional codes in FWA systems without antenna diversity or FWA systems with limited antenna diversity. Indeed, turbo codes only outperform convolutional codes in FWA systems having significant antenna diversity.  相似文献   

2.
In a high capacity personal communication system (PCS), for a given bandwidth, co-channel interference (CCI) limits the system capacity. Low-complexity diversity combining algorithms and circuit architectures for co-channel interference cancellation and frequency-selective fading mitigation, which do not require training sequences, are introduced. Results obtained from computer simulation of hardware show that two-antenna diversity combining gives wireless communication systems a signal to interference ratio improvement of at least 3 dB over conventional two-antenna selection diversity. The technique is also effective in mitigating frequency-selective fading without using conventional equalization-an average irreducible word error rate (WER) of 2.4% is obtained in computer simulation of hardware for radio channels with normalized delay spread of 0.3. In contrast, for the same WER, selection diversity and single antenna without diversity can sustain normalized delay spread up to about 0.16 and 0.06 respectively  相似文献   

3.
In wireless communication systems, multipath interference has a significant impact on system design and performance. Fast fading variations are caused by the coherent summation of multiple echoes from many reflection points reaching the receive antenna. Antenna diversity is one technique that can be used to overcome multipath fading. A test system used to measure the diversity performance of an antenna pair was used to experimentally determine the complex correlation coefficient between the two antenna branches. A local mean estimation algorithm based on the channel mean square error equalization was implemented. Thus, the two parameters that determine the expected diversity gain, i.e., the complex correlation coefficient and the mean level signal difference, were estimated. The test system was used to evaluate the polarization diversity performance of different antenna pairs in Rayleigh and Rician environments, both in the absence and in the presence of a human head phantom.  相似文献   

4.
A beam partitioning is introduced for a mobile surrounded uniformly by dense scatterers. The beams generate signals with equal mean Doppler shift contributions. The equal Doppler contribution of each signal is desirable in antenna combining or diversity systems. Beams that correspond to the partitioning are synthesized using the Fourier method, and a fading rate reduction scheme is described. The fading rate reduction is quantified as an increased correlation distance relative to omnidirectional antennas  相似文献   

5.
Transmitter diversity in the downlink of code-division multiple-access (CDMA) systems achieves similar performance gains to the mobile-station receiver diversity without the complexity of a mobile-station receiver antenna array. Pre-RAKE precoding at the transmitter can be employed to achieve the multipath diversity without the need of the RAKE receiver at the mobile station. We examine feasibility of several transmitter diversity techniques and precoding for the third-generation wideband CDMA (WCDMA) systems. In particular, selective transmit diversity, transmit adaptive array and space-time pre-RAKE (STPR) techniques are compared. It is demonstrated that the STPR method is the optimal method to combine antenna diversity and temporal precoding. This method achieves the gain of maximum ratio combining of all space and frequency diversity branches when perfect channel state information is available at the transmitter. We employ the long range fading prediction algorithm to enable transmitter diversity techniques for rapidly time varying multipath fading channels.  相似文献   

6.
The performance of the maximum ratio combining method for the combining of antenna-diversity signals in correlated Rician-fading channels is rigorously studied. The distribution function of the normalized signal-to-noise ratio (SNR) is expanded in terms of a power series and calculated numerically. This power series can easily take into account the signal correlations and antenna gains and can be applied to any number of receiving antennas. An application of the method to dual-antenna diversity systems produces useful distribution curves for the normalized SNR which can be used to find the diversity gain. It is revealed that signal correlation in Rician-fading channels helps to increase the diversity gain rather than to decrease it as in the Rayleigh fading channels. It is also shown that with a relative strong direct signal component, the diversity gain can be much higher than that without a direct signal component.  相似文献   

7.
Relying on the distribution of noncentral multivariate F variates, we investigate the outage probability and spectrum efficiency performance of cellular systems with smart antennas. We consider interference-limited systems in which the number of interferers exceeds or is equal to the number of antenna elements, and we present closed-form expressions when the desired signal is subject to Rician-type fading and interfering signals exhibit Rayleigh-, or, more general Nakagami-type fading. When applicable, these new expressions are compared to those previously reported in the literature dealing with the performance of cellular systems without smart antenna capabilities and the performance of cellular systems with optimum combining when both the desired and interfering signals are subject to Rayleigh-type fading. Corresponding numerical results and plots are also provided and discussed.  相似文献   

8.
In this paper, we study the ability of transmit diversity to provide diversity benefit to a receiver in a Rayleigh fading environment. With transmit diversity, multiple antennas transmit delayed versions of a signal to create frequency-selective fading at a single antenna at the receiver, which uses equalization to obtain diversity gain against fading. We use Monte Carlo simulation to study transmit diversity for the case of independent Rayleigh fading from each transmit antenna to the receive antenna and maximum likelihood sequence estimation for equalization at the receiver. Our results show that transmit diversity with M transmit antennas provides a diversity gain within 0.1 dB of that with M receive antennas for any number of antennas. Thus, we can obtain the same diversity benefit at the remotes and base stations using multiple base-station antennas only  相似文献   

9.
This paper examines the antenna diversity configurations that improve the performance in handheld radios. Experiments using spatial, polarization, and pattern diversity were conducted for both line-of-sight (LOS) and obstructed outdoor and indoor multipath channels that experienced Ricean fading. Antenna separation, polarization, and pattern were varied independently to the extent possible. Envelope correlation, power imbalance, and diversity gain were calculated from the measurements. Diversity performance is measured by diversity gain, which is the difference in signal-to-noise ratio (SNR) between the output of a diversity combiner and the signal on a single branch, measured at a given probability level. Diversity gain increases with decreasing envelope correlation between the antenna diversity branches. However, diversity gain decreases as the power imbalance between diversity branches increases because a branch that has a weak signal has only a small contribution to the combined signal. Diversity gain values of 7-9 dB at the 99% reliability level were achieved in non-line-of-sight (NLOS) channels for all diversity configurations even with very small antenna spacings. The use of polarization diversity reduced polarization mismatches, improving SNR by up to 12 dB even in LOS channels  相似文献   

10.
Downlink transmit diversity modes for WCDMA together with a two fixed-beam antenna array system are compared relative to the single antenna sectorized system in a radio network simulator. The transmit diversity methods investigated are: space-time transmit diversity and closed-loop mode I transmit diversity. Frequency selective (COST 259) and flat fading channels are considered and their impact to speech-only and data-only services is evaluated. A third service, which highlights the system performance of the various advanced antennas, is also investigated.The results in this investigation point out that the diversity gain in flat fading channels is substantial. In frequency-selective fading, the benefits of fixed beam systems is encouraging, whereas transmit diversity methods (especially Space-Time Transmit Diversity) is unsatisfactory.  相似文献   

11.
Downlink transmit diversity modes for WCDMA together with a two fixed-beam antenna array system are compared relative to the single antenna sectorized system in a radio network simulator. The transmit diversity methods investigated are: space-time transmit diversity and closed-loop mode I transmit diversity. Frequency selective (COST 259) and flat fading channels are considered and their impact to speech-only and data-only services is evaluated. A third service, which highlights the system performance of the various advanced antennas, is also investigated.The results in this investigation point out that the diversity gain in flat fading channels is substantial. In frequency-selective fading, the benefits of fixed beam systems is encouraging, whereas transmit diversity methods (especially Space-Time Transmit Diversity) is unsatisfactory.  相似文献   

12.
Next-generation mobile communication systems require high data transmission rate and low bit error rate, but multi-path fading still stands as a major problem. Antenna diversity techniques can overcome the problem. In this paper, we thoroughly study the antenna diversity performance on a mobile terminal through theoretical analysis, computer simulations, and practical prototype measurements. Specifically, a genetic methodology is developed to accurately evaluate the diversity gain achieved in the mobile terminal from both power level approach and correlation approach. Throughout the simulations and measurements, we demonstrate that it is beneficial to implement antenna diversity on mobile terminal side, and high diversity gain can be achieved when the antennas are placed in the terminals properly. Moreover, further improvement of the diversity gain can be obtained from the implementation of the matching networks.  相似文献   

13.
层叠分布式天线系统混合分集技术   总被引:1,自引:1,他引:0  
李汉强  郭伟  郑辉 《电讯技术》2005,45(4):83-86
研究了层叠分布式天线系统(CascadeDistributedAntennaSystem,CDAS)空间两层分集的中断概率性能。层叠分布式天线系统包括间隔较远的N个天线簇,每个天线簇包括距离较近的L个天线单元。文中推导了层叠分布式天线系统中断概率的表达式。相比于传统的单天线系统,数值仿真表明采用混合分集的分布式天线系统可以有效抑制快衰落和阴影衰落。  相似文献   

14.
Performance bounds for turbo-coded multiple antenna systems   总被引:1,自引:0,他引:1  
We derive performance bounds for turbo-coded systems with transmit and receive antenna diversity. The bounds are derived by limiting the conditional union bound before averaging over the fading process. It is demonstrated that this approach provides a tight upper bound on the error probability of the turbo-coded multiple antenna systems. We also describe a method for deriving the weight-enumerating function of turbo-coded multiple antenna systems in order to take into account the presence of transmit and receive antenna diversity. Examples of the bounds are presented to illustrate their usefulness.  相似文献   

15.
The advancement of antenna technology in personal wireless communication systems has been encouraged by the increasingly stringent demands placed upon these systems to provide low-power and highly reliable information transfer. The antenna designer must not only consider the cost, manufacturability, compactness, and system integrability of the radiator but also generate a product which satisfies rigid specifications concerning return loss, bandwidth, and gain while operating in a complex radiating environment. Successful, cost-effective approaches to the design of antennas for communication devices rely upon the implementation of sophisticated analysis tools, such as the finite-difference time-domain (FDTD) method, capable of predicting the electromagnetic behavior of complicated topologies. In this work, the behavior of planar inverted F, monopole, and loop antennas is investigated using tools based upon the FDTD approach. Such factors as the effects of the conducting chassis, plastic casing, and biological tissue on the antenna performance are investigated. Experimental measurements are used to validate the results obtained from computations and to provide further insight into the behavior of the different geometries. The use of antenna diversity to reduce the effects of multipath fading is discussed, and several examples of antenna diversity configurations are provided.  相似文献   

16.
In this paper we investigate throughputs of Slotted-ALOHA code division multiple access systems with differential detection upon L-branch antenna by means of maximum ratio combining (MRC) diversity technique. We investigate the effects of co-channel interference by employing two different fading models (i.e. between the desired signals and its interferences.) We consider systems under Nakagami/Nakagami and Rician/Nakagami fading environments. The purpose of employing MRC diversity and differential phase shift keying with L-branch antenna is to overcome multipath fading interference in order to enhance the performance of the systems. Our research indicates that the implementation of L-branch antenna in the receiver have reasonably increased the throughputs of the systems. Furthermore, we also investigate the inverse relation between interference signal and the throughputs of the systems. We further point out that the value of Nakagami fading parameter M and Rician factor K are proportional to the achievable throughputs of the systems.  相似文献   

17.
The practical space and frequency diversity performance achievable inside a building at 1.75 GHz under fading conditions due to the motion of a portable terminal and due to the movement of people are investigated. Data are collected using a four-branch dual-frequency envelope receiver positioned throughout one floor of a university building of common construction type. The measurement environment is characterized for large-scale path loss and wall transmission loss. Envelope cross correlations are calculated, and performance of diversity is measured for various frequency separations and antenna spacings which would be applicable given the physical size of portable telephones and data terminals. Two-branch space diversity is directly compared to two-branch frequency diversity and to four-branch hybrid diversity based on simultaneous measurements of each using selection combining. The distributions of correlations and diversity gain at different locations are also investigated. Results indicate that two- and four-branch diversity can be a very effective way to combat signal fading for portable terminals in an indoor radio environment  相似文献   

18.
The next-generation wireless communication systems are expected to support high-speed data transmission. Associated with high transmission rates, however, is the problem of multipath intersymbol interference (ISI) due to frequency-selective fading. Decision feedback equalization (DFE) and antenna diversity combining are two practical techniques for combating multipath ISI. Through simulations we investigate the performance of diversity combining, together with DFE, under various numbers of antenna branches and equalization taps, in a quasistationary frequency-selective fading environment with additive white Gaussian noise (AWGN) and cochannel interference (CCI). We consider joint optimization combining and power selection diversity combining. We simulate the combiner, using quaternary phase shift keying (QPSK) modulation with up to four antenna branches. Our results show that using antenna diversity and DFE with joint optimization combining provides performance improvement with lower computational complexity, as compared to that of using either DFE or diversity combining alone for combating ISI  相似文献   

19.
In a previous paper by Bahceci et al., antenna selection ' for multiple-antenna transmission systems under the assumption that the subchannels between antenna pairs fade independently was studied. In this paper, the performance of such systems when the subchannels experience correlated fading is considered. It is assumed that the channel-state information (CSI) is available only at the receiver, the antenna selection is performed only at the receiver, and the selection is based on the instantaneous received signal power. The effects of channel correlations on the diversity and coding gain when the receiver system is a subset of the antennas are quantified. Theoretical results indicate that the correlations in the channel do not degrade the diversity order, provided that the channel is full rank. However, it does result in some performance loss in the coding gain.  相似文献   

20.
In this paper, we present a comprehensive performance evaluation of chip interleaving effect on turbo coded direct sequence spread spectrum (DS‐SS) system in a frequency non‐selective Rayleigh fading channel with antenna diversity reception. At the transmitter, chip interleaver scrambles the SF (spreading factor) chips associated with a data symbol and transforms the transmission channel into a highly time‐selective or highly memoryless channel at the chip level. The use of chip interleaving is equivalent to using SF‐antenna diversity reception with correlated fading among the branches and with reduced average received signal power per antenna by a factor of SF. We theoretically analyze how chip interleaving alters the received signal statistics. Then, the effect of the various parameters, viz. interleaver size, interleaving depth, information sequence length, spreading factor and the fading maximum Doppler frequency, are also evaluated. It is found that the bit error rate (BER) performance improves with increasing spreading factor and increasing frame length. Chip interleaving is found to be effective in the presence of receive antenna diversity as well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号