首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 656 毫秒
1.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

2.
通过红外光谱、气质联用和离子色谱等分析方法确定了磷酸二丁酯在后处理常见工况2.0 mol/L HNO3下的反应产物主要为丁醇、丁酸、丙酸、磷酸一丁酯和磷酸根离子等。采用离子色谱定量分析测定了磷酸一丁酯和磷酸根离子的浓度与反应时间和温度的关系,计算了磷酸二丁酯水解反应的速率常数,并对测定数据进行了计算拟合。结果表明:在110~150 ℃范围内,磷酸二丁酯的水解速率随温度的升高呈指数增长,满足准一级反应动力学方程;110 ℃和150 ℃的一级水解速率常数分别为6.30×10-3 s-1和2.10×10-1 s-1,二级水解速率常数分别为3.10×10-3 s-1和1.98×10-1 s-1;一级水解反应的指前因子为9.38×1012 s-1,对应的活化能为111.0 kJ/mol,二级水解反应的指前因子为1.09×1016 s-1,对应的活化能为135.2 kJ/mol。动力学计算值与实验值的误差在±9%以内。  相似文献   

3.
99Mo是一种重要的医用放射性同位素。采用低浓铀(LEU)靶件生产裂变99Mo是发展趋势。本工作进行了电沉积UO2靶件制备、靶件溶解以及99Mo化学分离等工艺研究,确定了电沉积LEU UO2靶件制备医用裂变99Mo的工艺流程。研究表明,于不锈钢管内壁上电沉积UO2,在pH=7、电流0.5~2 mA/cm2、温度75~90 ℃、镀液中U浓度5 mg/mL条件下,经过约210 h电沉积,不锈钢管内壁上UO2沉积层质量达到42 mg/cm2;采用6 mol/L HNO3溶解UO2镀层。采用α-安息香肟沉淀法实现99Mo与大量裂变产物的初步分离,采用阴离子交换法与活性炭色层法联用实现99Mo的纯化;纯化后的99Mo溶液中,杂质131I、90Sr、95Zr、103Ru、238U活度与99Mo活度比值分别为4.47×10-6%、7.40×10-7%、8.67×10-7%、2.57×10-6%、1.69×10-14%,均小于《欧洲药典》规定值,满足医用要求。本工作建立了电沉积LEU UO2靶件生产高纯医用裂变99Mo的工艺流程,为今后采用LEU技术生产医用裂变99Mo,进而实现其自主规模化生产打下了基础。  相似文献   

4.
用气相色谱法研究了238Pu为α源的30%TBP-煤油-HNO3体系的辐解产物DBP和MBP的生成情况,研究了反萃剂、反萃条件和钚等因素对DBP/MBP分析的影响,考察了辐照累积剂量、剂量率和稀释剂等因素对DBP和MBP生成量的影响。结果表明:DBP和MBP生成量随吸收剂量、剂量率的增加而增大;在剂量率73.7Gy/min、累积剂量5×105Gy时,DBP浓度达到7.09×10-2mol/L,MBP浓度达到9.84×10-3mol/L;在吸收剂量5×105Gy时,加氢煤油、正十二烷和特种煤油中的DBP生成量分别为4.45×10-2、4.44×10-2 、4.35×10-2mol/L,MBP生成量为3.52×10-3、3.50×10-3、3.52×10-3mol/L,在吸收剂量5×105Gy时,三种稀释剂的DBP和MBP的生成量近似相等;在吸收剂量5×104Gy时,α辐照的DBP和MBP的生成量分别为5.57×10-2mol/L和5.10×10-3mol/L,对应的γ辐照的为2.50 ×10-3mol/L和3.14×10-4mol/L,α辐照产生的DBP和MBP的生成量明显大于γ辐照的。  相似文献   

5.
研究了脉冲辐解过程中氨基羟基脲与水辐解活性粒子(e-aq、·OH和·H)及单电子氧化剂·CO3-的反应动力学过程。反应近似为准一级反应,反应速率常数分别为k(e-aq)=1.41×108 L/(mol·s)、k(·OH)=1.05×1010 L/(mol·s)、k(·H)=2.68×105 L/(mol·s)、k(·CO-3)=4.25×108 L/(mol·s)。其中氨基羟基脲与·OH的反应速率常数最大,故在辐解过程中其为主要反应。  相似文献   

6.
以N,N,N′,N′-四辛基-2-甲基-3-氧戊二酰胺(Me-TODGA)或N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、磷酸三丁酯(TBP)为相改良剂、煤油为稀释剂,对比研究了水相酸度、萃取剂浓度、锶浓度、温度对Me-TODGA-TBP体系和TODGA-TBP体系萃取Sr2+的影响,并采用斜率法确定了萃合物的组成。结果表明,2种酰胺荚醚萃取Sr2+的分配比(DSr)随HNO3浓度(c(HNO3)=0.1~2.7 mol/L)、萃取剂浓度(c(萃取剂)=0.05~0.3 mol/L)的增加而增大,随Sr2+浓度的升高略有下降,随温度的升高而下降。2种萃取剂的萃合物组成分别为Sr(NO3)2•3Me-TODGA和Sr(NO3)2•2TODGA。萃取反应的ΔH分别为-69.46 kJ/mol和-51.39 kJ/mol,ΔS分别为-190.5 J/(mol•K)和-128.4 J/(mol•K),ΔG分别为-12.68 kJ/mol和-13.12 kJ/mol。相比之下,Me-TODGA萃取Sr2+的分配比不到TODGA的1/5。  相似文献   

7.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

8.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

9.
为了研究低能电子辐照对环氧树脂的体积电阻率、邵氏硬度、拉伸强度和官能团结构的影响,本文在电子辐照能量为30 keV,注量率1×1011 cm-2•s-1,总注量为1.6×1014 cm-2,真空度10-6 Pa条件下,结合国家标准对辐照前、后环氧树脂材料的机械性能和结构进行表征。结果表明,辐照后环氧树脂材料的体积电阻率、邵氏硬度、拉伸强度等宏观物理性能均有下降。傅里叶红外光谱图显示环氧树脂主要官能团强度降低,产生的•H、•OH等自由基与聚合物分子上的羟基与氢结合。研究结果对环氧树脂材料在辐射环境中的使用具有重要意义。  相似文献   

10.
材料中氢同位素行为热脱附谱实验方法研究   总被引:4,自引:4,他引:0  
材料中氢同位素行为研究是确保聚变堆安全和经济性的关键问题和重要研究方向。为研究材料中氢同位素的扩散、释放、居留等特性,建立了一种联合四极质谱仪(QMS)的热脱附谱(TDS)实验方法,解决了TDS系统超高真空、低氢同位素质谱本底、线性升温速率控制以及灵敏度标定等关键科学技术问题。通过涡轮分子泵和二级溅射离子泵实现了优于1×10-7Pa的超高真空,本底H2分压降至1×10-9Pa。通过MCGS直流PID控温程序实现样品升温速率在1~100 K/min范围可调,采用漏率可变的特制通导型玻璃漏孔标定TDS系统的氘气脱附速率灵敏度,确定该灵敏度系数α和最小可检测氘气热脱附速率(脱附速率灵敏度)分别为6.22×1024s-1·A-1、1.24×10-10s-1。采用镀镍Zr-4合金吸氘样品验证了TDS方法的有效性,初步分析了Zr-4中的氘热脱附特性。  相似文献   

11.
在LiCl-KCl共晶盐中,研究了在不同温度下La^(3+)的反应动力学机理。首先,在723~873 K范围内,利用循环伏安法(CV)测得La^(3+)的扩散系数D为3.06×10^(-5)~6.08×10^(-5)cm^(2)/s,并根据Arrhenius方程计算了La^(3+)在电解质中的扩散活化能E_(D)=34.51 kJ/mol。随后,利用电化学阻抗谱技术(EIS)研究了La^(3+)在电极上的动力学参数并测得交换电流密度i_(0)为0.48~1.39 A/cm^(2)、反应速率常数k_(0)=2.04×10^(-4)~5.90×10^(-4)cm/s及反应活化能E_(a)=35.04 kJ/mol。通过Nyquist图和拟合的等效电路图研究La^(3+)在W电极上的反应动力学机理,发现在LiCl-KCl共晶盐中La^(3+)的电化学反应速率不仅受扩散控制还受电荷转移控制,且与温度成正相关。  相似文献   

12.
The structure of uranyl ion in 1-butyl-3-methylimidazolium nonafluorobutanesulfonate ionic liquid (BMINfO) has been studied with 1H- and 35Cl-NMR, Raman, and UV-visible spectroscopy. In the 1H-NMR spectrum of the BMINfO solution prepared by dissolving UO2(ClO4)2·5 6H2O, the signal of H2O coordinated to UO22+ was observed at 6.64 ppm at 50°C (free H2O in BMINfO: 3.1 ppm at 50°C), suggesting that the uranyl species exists as the aquo complex, [UO2(H2O)n]2+. The signal of the coordinated H2O disappears with heating at 120°C for 3 h under vacuum. This indicates the dehydration from [UO2(H2O)n]2+. On the other hand, the 35Cl-NMR signal of ClO4 as the counter anion of UO22+ was observed at 1011 ppm (vs. Cl in D2O) regardless of heating. This indicates that no ClO4 ion is in the first coordination sphere of UO22+. Furthermore, the UV-visible absorption spectra showed that the characteristic absorption bands due to UO22+ were sharpened with the dehydration. This means the simplification of the structure around UO22+. These results described above suggest that UO22+ in BMINfO has no ligand in its equatorial plane after the dehydration, i.e. UO22+ exists as a bare cation in this system.  相似文献   

13.
研究了氨基羟基脲(HSC)浓度、H~+浓度、NO_3~-浓度、Fe3+浓度、UO2+2浓度、反应温度对氨基羟基脲与Np(Ⅵ)还原反应速率的影响,获得了其动力学方程。实验结果表明:增加氨基羟基脲浓度和提高反应温度,降低H~+浓度和NO_3~-浓度,可以提高氨基羟基脲与Np(Ⅵ)还原速率;在UO2+2存在或Fe3+浓度小于1×10-3 mol/L时,对氨基羟基脲与Np(Ⅵ)的还原没有明显影响。氨基羟基脲还原Np(Ⅵ)的动力学方程式为:-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c2.52(HSC)c-0.53(H+)c-0.61(NO_3~-),在4.00℃时k=(1 037±60)(mol/L)-1.40·s-1,活化能Ea=(64.03±6.4)kJ/mol。  相似文献   

14.
41Ca在核天体物理及地质年代学方面可能具有较高的应用价值。为测量天然岩石样品中41Ca的本底水平,探讨了41Ca-AMS测量中岩石样品的CaF2制备,提出了二次氟化的制备方法。在此基础上,通过对导电介质与靶锥的改进,设计了一种提高CaF-3束流引出强度的方案。该方案可有效提高CaF-3束流引出强度。实验结果表明,天然岩石样品中41Ca/40Ca(41Ca、40Ca原子个数比)的本底水平低于8×10-14。  相似文献   

15.
本文论述了快堆MOX燃料的氧势模型和氧与金属原子比(O/M比)控制原理。Blackburn模型和点缺陷模型是两种常用的核燃料氧势模型,而离子反应平衡常数、热力学数据及实验测量数据是影响氧势模型精确度的主要因素。当要求(U0.75Pu0.25)O2-x燃料的O/M比为1.97时,若在1 750 ℃、0.1 MPa Ar-5%H2气中烧结,采用Blackburn模型进行计算,则理论上要求将氧分压控制在1.07×10-5 Pa,或将氧势控制在-386.15 kJ/mol;采用点缺陷模型进行计算,要求将氧分压控制在0.70×10-5 Pa,或将氧势控制在-393.22 kJ/mol。当要求O/M比分别为1.95、1.96、1.97、1.98、1.99、1.995时,理论上应将气体中的水分含量分别控制在370.4、739.8、1 633.7、4 403.6、17 855.4、43 064.8 ppm,或将气体露点分别控制在-30.10、-23.27、-14.98、-3.77、13.83、26.16 ℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号