首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过静态吸附实验,研究了改性稻杆对UO2+2的吸附行为,从吸附热力学和吸附动力学方面对改性稻杆吸附UO2+2的过程进行了分析,并采用红外光谱(FT-IR)、扫描电镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)等分析手段探讨了改性稻杆吸附UO2+2的机理。结果表明:改性稻杆对UO2+2的吸附过程符合Langmuir等温吸附模型,相关系数达到0.98以上,表现为以单层吸附为主;表面吸附是改性稻杆吸附UO2+2动力学控制的主要步骤,吸附动力学过程符合准二级吸附速率模型,相关系数达0.999 2;热力学研究表明,改性稻杆吸附UO2+2是吸热、自发、不可逆的过程;改性稻杆吸附UO2+2前后的表面形态发生了变化,部分晶体结构发生了改变,吸附过程中改性稻杆细胞壁上的—OH、C O、Si O及P—O等活性基团与UO2+2发生络合反应,形成络合物,故改性稻杆吸附U(Ⅵ)的机理为表面络合吸附。  相似文献   

2.
以高庙子膨润土为研究对象,通过静态吸附实验,考查了高庙子膨润土对U(Ⅵ)的吸附特征,研究了接触时间、固液比、铀的初始浓度、pH、离子类型和离子浓度等因素对U(Ⅵ)吸附特征的影响,并讨论了膨润土对U(Ⅵ)的吸附动力学和热力学过程。结果表明:吸附过程在24 h后达到动态平衡;最佳吸附固液比为1:300;最佳吸附初始浓度为40 mg·L~(-1);在pH为5时,膨润土对U(Ⅵ)的吸附效果最好,过酸或过碱都会影响膨润土对U(Ⅵ)的吸附;溶液中Ca~(2+)、CO_3~(2-)显著降低了膨润土对U(Ⅵ)的吸附效果,影响程度随着离子浓度的增加而增大;Freundlich等温吸附模型和准二级动力学模型对吸附过程的拟合效果较好,主要表现为多层吸附。  相似文献   

3.
通过静态吸附实验,以稻秆为吸附剂、含U(Ⅵ)溶液为吸附质,研究了吸附剂改性方法、吸附剂用量、溶液pH值、吸附温度等因素对稻秆吸附U(Ⅵ)效果的影响,探讨了改性稻秆吸附U(Ⅵ)的热力学、动力学性质。实验结果表明,用0.5mol/L NaOH能够对稻秆进行有效改性,在吸附pH=4.0、吸附时间为180min、改性稻秆投加量为5~8g/L、室温条件下,改性稻秆吸附U(Ⅵ)可达到较好吸附效果,U(Ⅵ)去除率达到99.72%;但随着铀初始质量浓度的增加,U(Ⅵ)去除率降低。改性稻秆吸附U(Ⅵ)的热力学过程遵循Langmuir等温吸附方程,相关系数r2=0.989 9;改性稻秆吸附U(Ⅵ)的动力学过程符合准二级动力学方程,相关系数r2达到0.999 2。  相似文献   

4.
针对具有放射性的含铀废液,本实验采用间歇法,选用养护28 d、粒径为200~220 μm的地质水泥颗粒作为吸附剂,通过改变水泥投加量、吸附时间、pH值、U(Ⅵ)浓度、溶液温度等环境因素,研究地质水泥对U(Ⅵ)的静态吸附规律,为评估含U(Ⅵ)地质水泥固化体的固有稳定性提供依据。结果表明,在较低固液比(0.5 g/L)和较短时间(1.5 d)内,地质水泥对不同浓度U(Ⅵ)的吸附率达99.9%以上,且吸附量受U(Ⅵ)浓度和环境因素(pH值、溶液温度)的影响较小,吸附条件温和。热力学行为更符合Langmuir等温吸附模型,意味着该过程是一个吸热、以单层吸附为主的吸附过程。吸附材料结构表征结果证实,该吸附过程同时存在物理(静电吸引)与化学(离子交换)两种吸附机制。  相似文献   

5.
谷壳对铀(Ⅵ)的吸附性能及机理研究   总被引:2,自引:2,他引:2  
通过静态吸附实验,研究了pH、吸附时间、铀初始质量浓度、吸附剂用量、谷壳粒径、温度等对谷壳吸附铀效果的影响,从热力学和动力学方面对吸附过程进行了分析,并通过红外光谱(IR)和扫描电镜(SEM)探讨了吸附机理。结果表明,单位质量谷壳对铀的吸附量随铀初始质量浓度的增大而增大,随谷壳用量的增大而减小,随温度的升高而增大;在pH=3、粒径为100~120目时吸附效果最好;吸附在60min基本达到平衡。在25℃时,饱和吸附量qmax可达15.14mg/g。谷壳对铀的吸附遵循Langmuir等温线,符合准二级动力学方程。谷壳吸附铀前后的红外光谱表明,谷壳主要是由羟基、羰基、苯环及碳水化合物组成,通过络合或离子交换的方式吸附铀。  相似文献   

6.
合成了一种BiCuSO基新型材料,通过批次实验探究pH、振荡时间、初始U(Ⅵ)浓度、温度对吸附铀的影响。结果表明,当pH=6.5、t=120min时吸附效果最佳,最大吸附量可达572.6mg/g(ρ0(U(Ⅵ))=1 000mg/L)。通过动力学及热力学模拟可得,该吸附符合准二级动力学及Freundlich等温吸附模型,且在不同温度下ΔG<0,表明反应为自发反应。此外,利用X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)等表征手段对吸附前后的样品进行了表征,探究了其中的吸附机理,为寻求新材料处理放射性废液中的铀提供了理论支撑。  相似文献   

7.
采用静态法研究了某铀矿山附近土壤中的红壤胶体在不同pH值、离子强度、吸附平衡时间、铀溶液初始浓度、胶体用量、胶体粒径和有机质条件下对U(Ⅵ)的吸附影响,从热力学和动力学方面对吸附过程进行了分析,并通过元素分析、红外光谱(FT-IR)和扫描电镜(SEM)对吸附机理进行了初步探讨。实验结果表明:离子强度越小,胶体粒径越小,胶体对U(Ⅵ)的吸附量越大;单位质量红壤胶体对铀的吸附量随铀初始质量浓度的增大而增大,随红壤胶体用量的增大而减少;在25 ℃、pH值为3.5、离子强度为0.001 mol/L时,粒径小于1 μm的红壤胶体的饱和吸附量qmax为76.76 μg/mg。红壤胶体吸附铀酰离子前后的红外光谱表明,与吸附相关的主要基团为羟基、羰基、Si-O、Si-O-Fe等。红壤胶体对铀的吸附遵循Langmuir吸附等温线,符合准二级吸附动力学方程。  相似文献   

8.
以伊利石为吸附剂,通过吸附实验探究U(Ⅵ)在伊利石上的吸附特征,分别考查了接触时间、吸附剂用量、U(Ⅵ)初始浓度、pH值及温度对吸附的影响。用FT-IR和SEM对吸附前后的伊利石进行表征,研究了U(Ⅵ)在伊利石上吸附的动力学和热力学过程。结果表明:吸附过程在10 h后达到动态平衡;在U(Ⅵ)初始浓度为50 mg/L时,吸附效果最好;最佳吸附剂用量为0.03 g;pH值对伊利石吸附铀的影响显著,最佳pH值为5~6;升高温度有利于U(Ⅵ)在伊利石上的吸附;准二级动力学模型和Langmuir等温吸附模型对U(Ⅵ)在伊利石上的吸附过程拟合效果较好,吸附过程主要为表面络合作用,属于单层吸附。  相似文献   

9.
通过水热合成法成功地制备了丙三醇改性Ni/Al型水滑石(GMH),并通过批量处理法和静态吸附法考察了在固体投加量、溶液pH、离子强度、腐殖酸、接触时间和温度等因素影响下,溶液中Eu(Ⅲ)和U(Ⅵ)在GMH上的吸附行为。采用扫描电镜(SEM)、红外光谱(FTIR)、X射线衍射(XRD)等表征手段对材料吸附前后进行分析,结合吸附动力学和热力学模型对吸附机理进行探讨。结果表明,溶液pH值对Eu(Ⅲ)和U(Ⅵ)在GMH上的吸附行为影响显著,在pH=7.0左右时吸附率达到最大;准二级动力学模型和Langmuir等温线模型可以很好地描述Eu(Ⅲ)和U(Ⅵ)在GMH上的吸附过程,且此过程是自发的、吸热的过程;实验条件下,GMH对溶液中的Eu(Ⅲ)和U(Ⅵ)的最大理论吸附量分别为511 mg/g和441 mg/g;GMH对溶液中Eu(Ⅲ)的吸附主要是通过静电相互作用、内层表面络合以及离子交换相互作用实现;而对U(Ⅵ)的吸附主要是通过静电相互作用和内层表面络合作用实现的。实验表明,合成材料在含低放废水的有效净化和修复方面具有很大的应用前景。  相似文献   

10.
以高岭土为研究对象,采用静态吸附的实验方法,探讨了吸附时间、铀(Ⅵ)的初始浓度、吸附剂质量、pH值、离子种类、腐殖酸质量等因素对铀(Ⅵ)吸附的影响。结果表明:高岭土对铀(Ⅵ)的吸附性能较好,在6 h时就达到了平衡,最佳铀(Ⅵ)的初始浓度为60μg?m L~(-1);最佳的吸附剂质量为0.01 g;随着pH值的增大,高岭土对铀(Ⅵ)的吸附效果先增大,后减小,pH=5时,吸附效果最大;溶液中K~+、NO_3~-、Na~+和SO_4~(2-)对铀(Ⅵ)的吸附影响较小,Mg~(2+)、CO_3~(2-)和HCO_3~-对铀(Ⅵ)的吸附有抑制效果,不利于吸附;溶液中腐殖酸质量的增加会抑制高岭土对铀(Ⅵ)的吸附。实验结果同时表明:准二级动力学模型较准一级动力学模型能更好地描述U(Ⅵ)在高岭土上的吸附。  相似文献   

11.
氧化石墨烯由于具有高比表面积和大量含氧功能基团,在放射性核素的高效富集方面引起广泛的关注。利用自制的氧化石墨烯作为吸附剂,研究了不同实验条件下对放射性废水中U(Ⅵ)的吸附行为,研究了pH、离子强度、温度和氧化石墨烯浓度对U(Ⅵ)吸附的影响。结果表明,氧化石墨烯对U(Ⅵ)的吸附主要是形成内层表面络合物,具有很强的去除能力,是目前所有材料中对U(Ⅵ)吸附能力最强的材料之一。吸附后的石墨烯经强酸处理后可以实现循环利用,而且吸附能力没有明显降低,但是弱酸处理不能使吸附的铀从石墨烯表面解吸。随着未来技术的发展,氧化石墨烯能够低成本大量制备后,在放射性废水处理中将具有重要的应用前景。  相似文献   

12.
铀在木纤维上的吸附行为及机理分析   总被引:4,自引:2,他引:4  
为了解木纤维对铀的吸附特性,通过静态吸附实验,研究了木纤维的粒度、吸附时间、用量、温度及溶液的pH值和初始浓度等因素对模拟含铀废水中U(Ⅵ)去除率的影响,并从热力学和动力学方面对吸附过程进行了分析。结果表明:溶液初始pH≈3时,木纤维对铀的吸附平衡时间为4h,且吸附剂粒径越小、温度越高、用量越大,越有利于铀的去除;铀在木纤维上的吸附过程符合Langmuir等温吸附方程,吸附动力学过程可用准二级吸附动力学模型描述,表明化学吸附主要受动力学控制;木纤维吸附铀是自发的吸热反应。SEM、FT-IR和EDS分析结果表明,木纤维吸附铀后表面形态发生了改变,且在吸附过程中铀主要与木纤维表面活性基团螯合并形成配合物,存在表面络合吸附行为;吸附铀前后的能谱对比分析表明,吸附过程中存在离子交换行为。因此,木纤维对铀的吸附机理是以离子交换和表面络合吸附为主、物理吸附为辅的混合吸附过程。  相似文献   

13.
铀矿开采及铀分离纯化过程中产生的含铀废水可能严重污染环境和生态系统。利用吸附法分离含铀废水中的U(Ⅵ)既可有效回收铀资源,又能减轻环境污染。为达到高效分离含铀废水中U(Ⅵ)的目的,本文结合离子印迹及化学交联法制备了离子印迹壳聚糖(CS)/碳纳米管(CNT)(ICC)复合膜,采用静态吸附法考察了ICC对水溶液中U(Ⅵ)的吸附性能,并采用SEM、XRD、FTIR及XPS对吸附前后的ICC进行表征。表征结果表明,ICC具有多孔结构以及较丰富的功能基团(氨基、羧基),且CNT在壳聚糖基质中均匀分散。吸附实验结果表明:利用不同原料配比所制备的ICC中,以CS与CNT质量比为1∶0.3的ICC-2对U(Ⅵ)吸附性能最佳,是由于其具有丰富的孔结构以及经离子印迹产生的大量与铀酰离子匹配的空腔;ICC吸附U(Ⅵ)的吸附等温线符合Langmuir模型,在pH=5.0、298 K时,最大吸附容量达215.83 mg/g;吸附动力学符合准二级动力学模型,表明以化学吸附为控速步骤;ICC-2能选择性去除水溶液中的U(Ⅵ),且吸附过程为自发吸热过程。吸附U(Ⅵ)的ICC-2利用0.2 mol/L HNO...  相似文献   

14.
为了在粘土矿物胶体处理系统中核素迁移机理的研究工作提供基础性数据和技术依据,采用静态吸附法研究了铝皂石胶体在不同接触时间、p H、离子种类、腐殖酸用量和温度条件下对U(Ⅵ)吸附效果的影响,应用激光粒度仪、Zeta电位仪、傅里叶变换红外光谱仪(Fourier Transform Infrared,FT-IR)、X射线荧光光谱仪(X-ray Fluorescence Spectrometer,XRF)和扫描电子显微镜(Scanning Electron Microscope,SEM)对铝皂石胶体的结构和吸附机理进行探究。实验结果表明:升温有利于反应的进行,溶液中阴阳离子对吸附效果的影响很大;当吸附平衡时间为20 min、pH等于6、腐殖酸投加量为2 mg时,铝皂石胶体对U(Ⅵ)吸附效果最好。实验所制备的铝皂石胶体具有良好的吸附性能,有望成为一种能够有效处理含铀废水的吸附材料。  相似文献   

15.
以三聚氰胺为原料、碳酸钙为辅助模板,采用热聚合法对石墨相氮化碳(g-C3N4)进行改性,制备了多孔石墨相氮化碳(PCN)材料,研究了g-C3N4改性前后对U(Ⅵ)的吸附效果,并利用SEM、BET、FT-IR、XPS等表征手段对PCN吸附U(Ⅵ)的机理进行了分析。结果表明:PCN比表面积显著增大(58.5 m2/g),约为g-C3N4的4倍;在初始pH=5、吸附时间2 h、U(Ⅵ)初始浓度10 mg/L、PCN用量0.2 g/L、温度303 K条件下,PCN对U(Ⅵ)的最大吸附量为92 mg/g;整个吸附过程符合准二级动力学方程以及Langmuir等温吸附模型;此外,升高温度有利于PCN对U(Ⅵ)的吸附。FT-IR、XPS表征结果表明,PCN中的含氮基团参与了PCN对U(Ⅵ)的吸附去除。  相似文献   

16.
铀在榕树叶上的吸附行为及其机理分析   总被引:2,自引:7,他引:2  
通过静态吸附实验,研究了UO22+在榕树叶上的吸附行为,从热力学和动力学方面对吸附过程进行了分析,并通过红外光谱、扫描电镜探讨了吸附机理。结果表明:UO22+在榕树叶上的吸附是吸热过程,符合Freundlich等温吸附方程,相关系数达0.99以上;表面吸附是动力学控制的主要步骤,吸附动力学过程可用准二级吸附速率方程来描述,相关系数达0.999 8;榕树叶吸附铀是自发的、吸热的吸附反应;榕树叶对铀的吸附使细胞的表面形态发生了改变,在榕树叶吸附铀的过程中,UO22+主要与细胞表面的—OH、C=O、P—O及Si=O等基团螯合,形成配合物,因此,榕树叶吸附铀的机理表现为表面络合吸附机理。  相似文献   

17.
通过α-酮戊二酸与壳聚糖反应生成Schiff碱,再用NaBH4还原制备出α-酮戊二酸改性壳聚糖。采用FT-IR、XRD和SEM对其结构进行表征,研究其对水溶液中U(Ⅵ)的吸附行为,考察溶液初始pH值、吸附时间、温度等因素对其吸附水溶液中U(Ⅵ)效果的影响。结果表明,在35℃、pH=4.0、吸附时间为45min的条件下,对U(Ⅵ)浓度为5mg/L的水溶液中铀的去除率在99%以上,U(Ⅵ)的剩余浓度已达到国家排放标准(0.05mg/L)。吸附U(Ⅵ)的α-酮戊二酸改性壳聚糖可用8%的NaOH溶液进行解吸再生,解吸再生后的吸附剂对U(Ⅵ)的吸附效果未明显下降。SEM表明,α-酮戊二酸改性壳聚糖表面粗糙,呈现凹凸不平的多孔结构。FT-IR分析显示,α-酮戊二酸改性壳聚糖表面的—COOH是U(Ⅵ)的主要结合位点。  相似文献   

18.
研究了聚合铝对铀的吸附以及在含铝离子的溶液中用偶氮胂Ⅲ进行铀的测定方法的探索。研究表明:在1∶1(体积比)的盐酸介质中,当c(AlCl3)<0.1mol/L时,用偶氮胂Ⅲ测定铀误差小于10%,摩尔吸光系数仅103 L/(mol.cm)。当聚合铝的羟铝比为2、铝浓度为5.64×10-3 mol/L时,可实现铀的吸附率在90%以上。因此聚合铝是一种很好的吸附铀的材料,并可实现含铀废水的减容,从而降低核废物处理成本。  相似文献   

19.
甲醛改性多壁碳纳米管吸附铀的性能研究   总被引:1,自引:1,他引:0  
对纯化后的多壁碳纳米管(MWCNTs)采用甲醛进行羟甲基化改性,研究了改性后的MWCNTs对铀的吸附性能,考察了介质酸度、温度、超声时间、溶液初始浓度以及改性MWCNTs加入量对铀的吸附量和吸附率的影响。结果表明,改性MWCNTs在水溶液中的分散性良好,在pH为2.0~7.0范围内,改性MWCNTs对铀的吸附量和吸附率随pH增大而升高。铀的吸附量随初始浓度的增大而升高,铀初始浓度为50 μg/mL时,吸附量达46.44 mg/g,对铀的吸附率达90%以上。温度、超声时间和离子强度对其吸附量影响不大。吸附反应符合Langmuir和Freundlich方程,最大理论吸附容量为55.87 mg/g。  相似文献   

20.
在核废料处理中,如何将毒性大、易迁移的放射性核素U(Ⅵ)转化为毒性小、难迁移的U(Ⅳ)是非常关键的处理步骤。零价铁还原技术由于其价格廉价、环境友好、工艺简单等优点,在放射性核素U(Ⅵ)的还原处理方面也显示了较好的应用前景。本文详细地论述了零价铁去除U(Ⅵ)的3种界面化学作用机理:还原沉淀机理、吸附机理、共沉淀机理;还就各种水化学因素:氧化还原条件、介质pH、共存离子、天然有机质及微生物等对反应作用机理的影响进行了较为深入的讨论;并对如何有效、深入开展零价铁去除U(Ⅵ)的今后研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号