首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
潘桂玲 《电池》2023,(2):127-131
四氧化三钴(Co3O4)作为锂离子电池负极材料,具有较高的理论比容量,其颗粒形貌与大小对电化学储锂性能有明显影响。采用电解法和沉淀法分别制备颗粒状、片层状和八面体状Co3O4。用SEM和XRD对制备的Co3O4进行形貌和结构分析,并研究不同形貌Co3O4作为负极材料的电化学储锂性能。八面体状Co3O4具有良好的电化学储锂性能和循环稳定性,样品以0.2 C在0~3.0 V循环的首次放电比容量达1 162.2 mAh/g;经过100次循环后,放电容量保持率为73%。八面体状Co3O4具有最小的表面能,有利于形成均匀致密的固体电解质相界面(SEI)膜,提升材料的储锂性能。  相似文献   

2.
采用溶剂热法,利用表面活性剂的分散作用成功合成了FeSe2纳米颗粒,将其作为正极材料组装可充镁电池,并进行电化学性能测试。结果显示,FeSe2正极在100 mA/g电流密度下首次放电比容量为119 mAh/g,并在循环过程中展现出比容量的逐渐升高,在循环48次后获得最大放电比容量628mAh/g,同时具有良好的循环稳定性,在100次循环后仍保持581 mAh/g的放电比容量。非原位TEM、XPS和同步辐射软X射线吸收谱分析表明,FeSe2正极在循环过程中,铜集流体会参与正极电化学反应并形成含铜化合物,在正极材料中形成导电通路,这有利于电化学反应过程中电子的转移。因此,FeSe2纳米颗粒充分参与正极转化反应,并展现出高容量和长循环稳定性,为镁电池中的集流体和硒族化合物的匹配性设计提供了新的思路。  相似文献   

3.
采用球磨法制备不同氧化石墨烯添加量的LiFePO4/GO复合材料,研究氧化石墨烯添加量对LiFePO4正极锂离子电池性能的影响。通过XRD、SEM、FTIR、XPS和相关的电化学方法研究了材料的物理和电化学性能。结果表明,球磨法制备LiFePO4/GO复合材料不改变LiFePO4的物性,与纯LiFePO4相比,LiFePO4/GO复合材料表现出更好的高倍率性能和循环稳定性。其中LiFePO4与GO质量比为100∶1.25时,GO-1.25混合材料在0.5 C放电倍率下循环100次后显示出154.9 mAh/g的放电比容量,其容量保持率为98.7%。  相似文献   

4.
陈敏  唐泽勋  冯泽  商士波 《电池》2022,(3):293-296
镍钴锰三元材料在高电压下的循环稳定性有待提高。采用高温固相法制备Zr、Ti共掺杂和Al2O3包覆的单晶正极材料LiNi0.6Co0.2Mn0.2O2。用XRD、SEM和恒流充放电测试,分析材料的结构、形貌及电化学性能。材料的层状结构较好。扣式电池以0.20 C在3.00~4.40 V循环,放电比容量可达185.8 mAh/g;软包装电池以1.00 C在3.00~4.35 V循环1 500次,容量保持率为93.2%。  相似文献   

5.
采用固相法在LiNi0.82Co0.11Mn0.07O2(高镍NCM)正极材料表面包覆了纳米掺锑二氧化锡(ATO),并对比了不同包覆比例对正极材料性能的影响。扫描电子显微镜(SEM)检测表明,ATO在高镍NCM正极材料表面均匀分布。相比未包覆的高镍NCM正极材料(P-NCM),经过包覆的高镍NCM(ATO-NCM)表现出了更好的倍率性能与循环性能,0.25%(质量分数)ATO-NCM常温时3 C的放电比容量可达178.76 mAh/g,而P-NCM的放电比容量仅为166.02 mAh/g,1 C 50次循环后,0.25%的ATO-NCM材料的循环容量保持率为95.6%,远高于P-NCM的91.2%。ATO包覆可将高镍NCM的热分解温度提升10℃以上,且放热量更低。  相似文献   

6.
采用高温固相烧结对LiNiO2正极材料进行了Co与Ta掺杂改性,并对其进行元素含量、晶体结构、形貌、比容量、倍率性能、循环性能、差示扫描量热法(DSC)等测试。结果表明,Co可以改善材料倍率性能,Ta可以细化材料颗粒、提升循环性能。Co与Ta同时掺杂0.01%(摩尔分数)时,LNCTO-1放电(3 C/0.2 C)容量保持率为82.8%,循环(1 C/1 C)50次后,循环容量保持率为95.3%,热分解温度从189.3℃提升到了199.8℃,显示出了优良的综合性能。  相似文献   

7.
以Fe2O3和LiH2PO4为原料,聚丙烯为还原剂和碳源,采用一步固相法制备了LiFePO4/C复合正极材料,研究了不同温度对合成材料电化学性能的影响。利用X射线衍射(XRD)、扫描电子显微镜(SEM)等测试手段对合成材料进行了表征,通过恒电流充放电测试研究了材料的电化学性能。结果表明:于700℃下制备的LiFePO4/C复合材料在0.1、1、5C倍率下的首次放电比容量分别为160.4、143.0、108.3 mAh/g。在1 C和5 C经100次循环后,放电比容量分别为138.5 mAh/g和100.2 mAh/g,表现出良好的高倍率循环性能。  相似文献   

8.
周江  孟繁慧  朱莎  甄会娟  黄铃 《电源技术》2022,46(2):169-172
研究了LiCoO2正极和氧化亚硅/石墨复合负极(LiCoO2-SiO/石墨)软包锂离子电池体系(LIBs)循环衰减机理,通过循环过程中电化学阻抗(EIS)、增量容量分析(ICA)、正负极形貌等分析了循环的影响因素。结果表明,硅基负极材料在完全嵌锂状态下的体积膨胀不仅会导致SiO负极的颗粒破碎,与电解液的副反应加剧,其膨胀应力还会造成电极的导电网络和粘结剂网络的破损,从而导致正负极活性物质利用率降低,降低SiO负极材料的循环性能。此外,SiO负极的充放电电压平台较高,与石墨材料复合使用时,容易造成电池正极的过充和放电容量损失,正极过充会加剧正极材料结构破裂。而随着循环的进行,过充程度和放电容量损失会愈发严重,加速电池循环性能衰减。  相似文献   

9.
采用固相烧结+高速气流雾化工艺制备LiNi0.5Mn1.5O4正极材料,采用液相离子掺杂方式制备Mg、F掺杂的LiNi0.5Mn1.5O4材料。利用SEM、XRD、DLS等对材料微观形貌、结构、粒度分布进行表征,利用恒流充放电测试研究电化学性能。结果表明,与未掺杂样品相比,Mg、F掺杂的LiNi0.5Mn1.5O4电极具有优异的倍率性能(5 C放电比容量为114.12 mAh/g)和循环稳定性(1 C条件下150次充放电后,容量保持率在96.5%)。Mg、F掺杂的LiNi0.5Mn1.5O4材料纳米化程度提高、结构稳定性增强、界面阻抗降低,从而材料的高倍率放电及循环性能得到了提升。文章提供了一种改善镍锰酸锂极材料电化学性能的有效途径,具有较高的市场推广价值。  相似文献   

10.
采用高温固相法合成LiFePO4/C正极材料,并对其物理特性和电化学性能进行了分析。研究结果表明,该材料具有较高的振实密度、均匀的粒度分布、较小的比表面积,且具有单一的橄榄石结构,没有其它杂相。实验电池测试表明,材料具有较高的放电比容量及平稳的放电平台,0.2C充放电时,放电比容量达到152.5mAh/g。为了进一步评估该材料的循环性能,制造了以该材料为正极活性物质的2.2Ah标准软包装锂离子电池。电池经3000次充放电循环,其放电容量仍有1 919mAh,放电容量保持率为84.5%,结果表明材料的循环稳定性能优良。  相似文献   

11.
钟卓洪  叶乃清  马真  吴保明 《电源技术》2013,37(8):1310-1313
对低温燃烧法合成的富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的充放电性能、充放电循环过程中Mn离子的价态变化、电化学阻抗变化以及正极材料的结构变化进行了系统的研究。研究结果表明,在开头的若干次充放电循环中,富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的放电比容量随循环次数的增加而增加,经过若干次循环后可以达到一个相当高的水平,其循环性能良好。以0.1 C在2.5~4.6 V之间充放电,放电比容量可达244 mAh/g,第50次循环,仍保有233 mAh/g。充放电过程中晶格中的Mn4+离子部分转变为Mn3+并参与电化学反应,这是造成放电比容量随循环次数增加而增加的原因,而显微结构和晶体结构保持稳定及电化学阻抗的降低是材料具有良好循环性能的原因。  相似文献   

12.
采用二步固相反应法合成了橄榄石型Li Fe0.98Ni0.02PO4/C复合正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、恒流充放电、循环伏安等手段表征了材料的物相结构及电化学性能。结果表明:Ni2+掺杂并未改变Li Fe PO4的晶体结构,但材料的颗粒尺寸减小(粒径约为200 nm),颗粒形貌近似球形;Li Fe0.98Ni0.02PO4/C材料具有良好的电化学性能,0.2 C下首次放电比容量可达143.7 m Ah/g,10 C下,放电比容量为106.9 m Ah/g。循环伏安测试表明Ni2+的掺杂提高了Li+在材料中脱嵌过程的可逆性。  相似文献   

13.
胡传跃  郭军  彭秧锡 《电源技术》2012,36(7):951-952,965
以液相沉淀法制备的Li3PO4和NH4H2PO4均匀混合物为原料,合成了Fe2+空位的橄榄型锂离子电池Li1.08Fe-(PO4)1.08/C正极材料。X射线衍射光谱法(XRD)和扫描电子显微镜法(SEM)分析结果表明,采用Fe2+空位与碳包覆方法获得了较小晶胞体积和细小球形颗粒的Li1.08Fe(PO4)1.08/C粉末。0.2 C倍率电化学性能测试结果表明,纯Li1.08Fe-(PO4)1.08的首次放电比容量达142.4 mAh/g,而包覆9.23%C的Li1.08Fe(PO4)1.08的首次放电比容量达153.3 mAh/g、0.5 C倍率循环100次后的放电比容量为144.5 mAh/g。  相似文献   

14.
杨清华  徐旭升  郭灏  吴宁宁 《电源技术》2023,(10):1263-1267
将导电性优异的多孔碳材料石墨化科琴黑和具有极性锚定硫作用的过渡金属硫化物SnS2结合以改善硫正极材料的电化学性能。以一步水热法制备了二硫化锡-石墨化科琴黑复合材料(SnS2-GKB),其与科琴黑(C)一同作为载硫体,通过155℃熔融注硫,即可得到新型硫碳复合材料(SnS2-GKB/S/C)。该复合材料在0.05 C下的首次放电比容量为1 256.0 mAh/g,在2 C下为322 mAh/g,远高于同等放电倍率下的硫/科琴黑(S/C)的放电比容量;在0.1 C下进行循环性能测试时,SnS2-GKB/S/C循环100次后的放电比容量也明显高于S/C的放电比容量。将碳材料的优势和过渡金属硫化物的优势相结合共同作为载硫体可以显著改善硫正极材料的电化学性能。  相似文献   

15.
丁银  王晓清  阮艳莉  张磊  汤恩旗 《电源技术》2012,36(9):1266-1269
采用高温固相法合成尖晶石LiMn2O4,从掺杂Al3+稳定晶体结构和包覆抑制锰的溶解两方面来改善尖晶石LiMn2O4的高温电化学性能。实验表明,改善后的正极材料在高温50℃且0.5 C(C=120 mAh/g)下的首次放电比容量为93.3 mAh/g,循环50次后的放电比容量为82.8 mAh/g,比空白样品提高34.1 mAh/g,容量保持率达到88.7%,比空白样品提高39.8%。  相似文献   

16.
糖类作为碳源对LiFePO4/C正极材料性能的影响   总被引:1,自引:1,他引:0  
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4/C正极材料,采用X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和电化学手段对目标材料进行了结构表征和性能测试.考察了葡萄糖和蔗糖作为碳源对LiFePO4/C正极材料性能的影响.结果表明,以葡萄糖作为碳源的正极材料具有优良的电化学性能,首次放电比容量达136.3 mAh/g,远远高于纯的LiFePO4正极材料,随着循环次数的增加,材料的放电比容量逐渐增加,然后趋于稳定.循环30次后,比容量为139.6 mAh/g.  相似文献   

17.
采用不同晶型铁源探讨了其对磷酸锰铁锂正极材料电化学性能的影响。采用X射线衍射谱(XRD)、高分辨扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱及电化学性能测试手段等进行了正极材料物相及形貌的表征。研究发现,与a-Fe2O3相比,采用以g-Fe2O3为主相的铁源制备的LiMn0.75Fe0.25PO4/C正极材料在0.1 C下放电比容量能够达到164.6 mAh/g,20 C下依然能够达到106.5 mAh/g,表现出优异的倍率性能。在1 C下循环200次后,电池的容量保持率为93%,展现出良好的循环稳定性。  相似文献   

18.
分别以蔗糖、酚醛树脂、聚丙烯作为碳源,采用高温固相法制备了橄榄石型锂离子电池正极LiFePO4/C复合材料,并考察不同碳源对合成的LiFePO4/C复合材料电化学性能的影响。采用XRD、SEM、拉曼光谱分析、恒电流充放电测试和交流阻抗分析等方法对材料的结构、表面形貌及电化学性能进行了研究。结果表明,以聚丙烯为碳源合成的LiFePO4/C材料具有最佳的电化学性能。0.1C的放电比容量为154.9mAh/g,在2C下的放电比容量达131.3mAh/g,循环30次后容量为130.1mAh/g。  相似文献   

19.
氧化淀粉为碳源冷冻干燥法制备LiFePO_4/C的研究   总被引:1,自引:0,他引:1  
以氧化淀粉为碳前驱体和分散剂,采用冷冻干燥法制备LiFePO4/C正极材料,利用XRD、SEM、恒流充放电等手段对LiFePO4/C复合正极材料的物相结构、表观形貌及材料的电化学性畿进行研究.结果表明:冷冻干燥法可以使原料变成粉末,同时不破坏其均匀的混合状态;以氧化淀粉为碳源,碳含量为7.07%,在700℃高温下煅烧12 h合成的材料具有完整的晶型结构,颗粒大小均一,首次放电比容量达到165 mAh/g,接近理论放电比容量.1 C倍率下,50次循环后的容量衰减仅为0.20%,5 C倍率下,50次循环后的容量衰减为1.39%,电化学性能优异.  相似文献   

20.
以葡萄糖、NH4H2PO4、V2O5和LiF为原料,分别通过液相法和固相法合成了锂离子电池正极材料LiVPO4F/C复合材料,并通过X-射线衍射(XRD)、扫描电镜(SEM)及电化学测试技术对复合材料的结构、形貌及电化学性能进行了表征。结果表明,两种方法所合成复合材料均由三斜结构的LiVPO4F与碳组成;液相法所合成的材料首次放电比容量分别为133.7(0.2 C)、124.9 mAh/g(0.5 C)和118.7 mAh/g(1 C),明显高于相同测试条件下固相法所合成材料的首次放电比容量[131.2(0.2 C)、121.4 mAh/g(0.5 C)和104.9 mAh/g(1 C)],并且液相法合成的复合材料循环性能优于固相法合成的复合材料;液相法合成的LiVPO4F/C复合材料具有良好的循环性能和倍率性能,其2 C和5 C的放电比容量分别高达114 mAh/g和98 mAh/g,循环50次后,容量损失率均小于1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号