首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wholly aromatic all-para oriented poly(amide hydrazide) has been synthesized from N,N′-bis(4-aminobenzoyl) hydrazine (BABH) and terephthaloyl chloride (TC) by low temperature solution polycondensation. The polymer was characterized by elemental analyses, IR spectroscopy, solubility, viscosity and density measurements. The effect of various factors controlling the polymerization reaction (concentration of monomer and electrolyte (LiCl) in the reaction medium, nature of the medium and temperature at the initial stage of polymerization) on polymer viscosity was studied. To prepare a polymer of high viscosity, the optimum conditions were found to be, monomer concentration 0·25moll-1, LiCl concentration (in DMAc) 1% (w/v), with use of N-methyl pyrrolidone (NMP) as polymerization medium. The thermal behaviour of the polymer was studied in air and nitrogen by TGA and DSC. ©1997 SCI  相似文献   

2.
A latex interpenetrating polymer network (LIPN), consisting of poly(n‐butyl acrylate), poly(n‐butyl acrylate‐co‐ethylhexyl acrylate), and poly(methyl methacrylate‐co‐ethyl acrylate) and labeled PBEM, with 1,4‐butanediol diacrylate as a crosslinking agent was synthesized by three‐stage emulsion polymerization. The initial poly(n‐butyl acrylate) latex was agglomerated by a polymer latex containing an acrylic acid residue and then was encapsulated by poly(n‐butyl acrylate‐co‐ethylhexyl acrylate) and poly(methyl methacrylate‐co‐ethyl acrylate). A polyblend of poly(vinyl chloride) (PVC) and PBEM was prepared through the blending of PVC and PBEM. The morphology and properties of the polyblend were studied. The experimental results showed that the processability and impact resistance of PVC could be enhanced considerably by the blending of 6–10 phr PBEM. This three‐stage LIPN PBEM is a promising modifier for manufacturing rigid PVC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1168–1173, 2004  相似文献   

3.
Monodispersed crosslinked cationic poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] seed latexes were prepared by soapless emulsion polymerization, using 2,2′‐azobismethyl(propionamidine)dihydrochloride (V50) as an initiator and divinylbenzene (DVB) or ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The optimum condition to obtain monodispersed stable latex was investigated. It was found that the colloidal stability of the P4VP latex can be improved by adding an adequate amount of BA (BA/4VP = 1/4, w/w), and adopting a semicontinuous monomer feed mode. Subsequently, poly(4‐vinylpyridine‐co‐butyl acrylate)/Poly(styrene‐co‐butyl acrylate) [P(4VP‐BA)/P(ST‐BA)] composite microspheres were synthesized by seeded polymerization, using the above latex as a seed and a mixture of ST and BA as the second‐stage monomers. The effects of the type of crosslinker, the degree of crosslinking, and the initiators (AIBN and V50) on the morphology of final composite particles are discussed in detail. It was found that P(4VP‐BA)/P(ST‐BA) composite microspheres were always surrounded by a PST‐rich shell when V50 was used as initiator, while sandwich‐like or popcorn‐like composite particles were produced when AIBN was employed. This is because the polarity of the polymer chains with AIBN fragments is lower than for the polymer with V50 fragments, hence leading to higher interfacial tension between the second‐stage PST‐rich polymer and the aqueous phase, and between PST‐rich polymer and P4VP‐rich seed polymer. As a result, the seed cannot be engulfed by the PST‐rich polymer. Furthermore, the decrease of Tg of the second‐stage polymer promoted phase separation between the seeds and the PST‐rich polymer: sandwich‐like particles formed more preferably than popcorn‐like particles. It is important knowledge that various morphologies different from PST‐rich core/P4VP‐rich shell morphology, can be obtained only by changing the initiator, considering P4VP is much more hydrophilic than PST. The zeta potential of composite particles initiated by AIBN in seeded polymerization shifted from a positive to a negative charge. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1190–1203, 2002  相似文献   

4.
This study was to investigate the kinetics of drug release from polymer/TiO2 nanotubes composite. Lidocaine and carprofen were selected as model drugs to represent weak base and weak acid drugs, respectively. Mathematical models used to fit the in vitro drug release experimental data indicate that at higher pH, the drug release was first order diffusion controlled. At lower pH, the release of the two drugs exhibits two staged controlled release mechanism. The first phase is due to drug diffusion and the second stage is a result of poly(lactic‐co‐glycolic acid) (PLGA) polymer degradation. The rate of drug release from polymer/TiO2 nanotubes drug carrier was mainly controlled by three pH dependent factors: the solubility of the drug, the degree of polymer swelling/degradation, and the electrostatic force between polymer and drug. This study suggests that controlled release could be achieved for polymer/TiO2 nanotubes drug carrier via the modulation of pKa values of polymers and drug solubility. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41570.  相似文献   

5.
The non‐isothermal degradation kinetics of the cured polymer samples of N,N′‐bismaleimide‐4,4′‐diphenylmethane/barbituric acid [BMI/BTA = 2/1 (mol/mol)] based polymers in the presence of hydroquinone (HQ) and native BMI/BTA was investigated by the thermogravimetric (TG) technique. By adding 5 wt % HQ into the BMI/BTA polymerization, the activation energy (Ea) of the thermal degradation process increased significantly in comparison with native BMI/BTA. Thus, the thermal stability of the cured polymer sample in the presence of HQ was greatly improved. The thermal degradation process exhibits three distinct stages. The key kinetic parameters associated with these stages were attained via the model‐fitting method. For the sample of native BMI/BTA, the thermal degradation process was primarily controlled by nucleation, followed by the multi‐decay law in the first stage. In contrast, the reaction order model adequately described the thermal degradation kinetics in the second stage. As to the last stage, the complex processes were described satisfactorily by the best‐fitted reaction model. For the sample of BMI/BTA/5 wt % HQ, the degradation process was controlled by the nucleation mechanism, followed by the multi‐molecular decay law in the first stage. In contrast, the second stage was controlled by the mixed mode of the competitive reaction order mechanism and 3‐D diffusion mechanism. In the third stage, the complex processes were also adequately described by the best‐fitted reaction model. All the experimental results illustrated that incorporation of 5 wt % HQ into the BMI/BTA based polymer resulted in the best thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1923–1930, 2013  相似文献   

6.
We performed a series of experiments to study the effect of a chain transfer agent, n‐dodecyl mercaptan (n‐DM), on the development of morphology in composite latex particles. The morphologies were determined using a combination of transmission electron microscopy, differential scanning calorimetry, and surfactant titration. The polymer molecular weights were reduced up to 10‐fold with n‐DM levels up to 1.4% in the monomer. The addition of n‐DM can increase the extent to which second‐stage polymer domains are formed within the interior regions of the seed particles, but this is only expected under specific conditions. Numerical simulations support this conclusion. We also observed that the reduction in the molecular weight of the second‐stage polymer did not significantly increase the extent of phase separation and morphology rearrangement within the particles. The overall effect on the morphology was limited. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 945–957, 2006  相似文献   

7.
The production of polyhydroxyalkanoates (PHAs) from organic acids by mixed bacterial cultures using a process based on aerobic enrichment of activated sludge, that selects for mixed microbial cultures able to store PHAs at high rates and yields, is described. Enrichment resulted from the selective pressure established by periodic feeding the carbon source in a sequencing batch reactor (SBR); a mixture of acetic, lactic and propionic acids was fed at high frequency (2 hourly), high dilution rate (1 d−1), and at high organic load rate (12.75 g chemical oxygen demand (COD) L−1 d−1). The performance of the SBR was assessed by microbial biomass and PHA production as well as the composition and polymer content of the biomass. A final batch stage was used to increase the polymer concentration of the excess sludge produced in the SBR and in which the behaviour of the biomass was investigated by determining PHA production rates and yields. The microbial biomass selected in the SBR produced PHAs at high rate [278 mg PHAs (as COD) g biomass (as COD)−1 h−1, with a yield of 0.39 mg PHAs (as COD) mg removed substrates (as COD)−1], reaching a polymer content higher than 50% (on a COD basis). The stored polymer was the copolymer poly(3‐hydroxybutyrate/3‐hydroxyvalerate) [P(HB/HV)], with an HV fraction of 18% mol mol−1. The microbial community selected in the SBR was analysed by DGGE (denaturing gradient gel electrophoresis). The operating conditions of the SBR were shown to select for a restricted microbial population which appeared quite different in terms of composition with respect to the initial microbial cenosis in the activated sludge used as inoculum. On the basis of the sequencing of the major bands in the DGGE profiles, four main genera were identified: a Methylobacteriaceae bacterium, Flavobacterium sp, Candidatus Meganema perideroedes, and Thauera sp. The effects of nitrogen depletion (ie absence of growth) and pH variation were also investigated in the batch stage and compared with the SBR operative mode. Absence of growth did not stimulate higher PHA production, so indicating that the periodic feed regime fully exploited the storage potential of the enriched culture. Polymer production rates remained high between pH 6.5 and 9.5, whereas the HV content in the stored polymer strongly increased as the pH value increased. This study shows that polymer composition in the final batch stage can readily be controlled independently from the feed composition in the SBR. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
Narrow‐disperse and monodisperse cross‐linked core–shell polymer particles containing different functional groups, such as esters, hydroxyls, chloromethyls, carboxylic acids, amides, cyanos, and glycidyls, in the shell layers in the micrometer size range were prepared by a two‐stage precipitation polymerization in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80% DVB, was precipitation polymerized in acetonitrile without any stabilizer as the first‐stage polymerization and was used as the core. Several functional monomers, including methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2‐hydroxyethyl methacrylate, glycidyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, t‐butyl acrylate, i‐octyl acrylate, acrylic acid, acrylamide, acrylonitrile, styrene, and p‐chloromethyl styrene, were incorporated into the shells during the second‐stage polymerization. The resulting core–shell polymer particles were characterized with scanning electron microscopy and Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1776–1784, 2006  相似文献   

9.
Biodegradation of polyethylene and oxo‐biodegradable polyethylene films was studied in this work. Abiotic oxidation, which is the first stage of oxo‐biodegradation, was carried out for a period corresponding to 4 years of thermo‐oxidation at composting temperatures. The oxidation was followed by biodegradation, which was achieved by inoculating the microorganism Pseudomonas aeruginosa on polyethylene film in mineral medium and monitoring its degradation. The changes in the molecular weight of polyethylene and the concentration of oxidation products were monitored by size exclusion chromatography and Fourier transform infrared (FTIR) spectroscopy, respectively. It has been found that the initial abiotic oxidation helps to reduce the molecular weight of oxo‐biodegradable polyethylene and form easily biodegradable product fractions. In the microbial degradation stage, P. aeruginosa is found to form biofilm on polymer film indicating its growth. Molecular weight distribution data for biodegraded oxo‐biodegradable polyethylene have shown that P. aeruginosa is able to utilize the low‐molecular weight fractions produced during oxidation. However, it is not able to perturb the whole of the polymer volume as indicated by the narrowing of the polymer molecular weight distribution curve toward higher molecular fractions. The decrease in the carbonyl index, which indicates the concentration of carbonyl compounds, with time also indicates the progress of biodegradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The adiabatic compressibility of dilute aqueous solutions of methacrylic acid, poly-(methacrylic acid), and three poly(sodium methacrylates) obtained by neutralizing the polyacid with sodium hydroxide to different extents were determined from soundvelocity and density data. The ultrasonic velocity at 25°C. was measured by employing a precision ultrasonic interferometer, and the density was measured with Ostwald-type pycnometers. The plots of the decrease of compressibility per unit concentration, (β1 ? β)/c versus c shows that there is a marked difference between the curves of monomer and of polymer solutions. In case of the monomer there is a proportional decrease with increase in concentration, whereas in polymer in the dilute region (0.1?0.5g./dl.) the curve rises sharply, then shows down, and finally approaches a constant value at comparatively higher concentrations. The nature and number of the free counterions and the shape and the concentration of the polymer molecules are responsible for the compressibility of polymer solutions. However, the contribution of the size and shape and concentration of the polymer seem to be less than that of the nature and number of the counterions. The apparent molal volume ΦV2 and apparent molal compressibility ΦK2 for polymer repeat units show a sharp decrease with increase in concentration and finally attain a constant value at higher concentrations; this has been explained by the fact that in the dilute region the polymer, being extended by coulombic repulsion between similar charges situated on the side chain, enhances the formation of water clusters around it, and the free counterions are solvated, leading to a decrease to these values. The number of free counterions proportionately increases with concentration, causing a proportional decrease of the ΦV2 and ΦK2 values, until the concentration reaches a definite stage, above which the so-called condensation of ions occurs, and the number of free counterions does not increase further at higher concentrations.  相似文献   

11.
We developed a new approach to obtain polylactide hybrid block copolymers with vinyl monomers (styrene, methyl methacrylate, methyl acrylate) through the realization of a reaction sequence using triethylborane and various p-quinones. The method offered includes two stages. In the first stage, a chain-transfer agent was obtained by borylation of the terminal hydroxyl groups of polylactide. The second stage was vinyl monomer radical polymerization in the presence of p-quinone accompanied by SH2-substitution at the boron atom.1,4-Naphthoquinone, 2,3-dimethyl-1,4-benzoquinone, duroquinone and 2,5-di-tert-butyl-1,4-benzoquinone were used as synthetic polymer chain growth mediators. It is shown that 1,4-naphthoquinone and 2,3-dimethyl-1,4-benzoquinone, similar in their characteristics, are effective agents providing the realization of reversible-deactivation radical polymerization. Realization of reversible-deactivation radical polymerization was proved with the analysis of the kinetics of block copolymerization, molecular weight characteristics and compositional homogeneity of block copolymers as well as its further capability to elongate the polymer chain. Synthesized block copolymers have a high thermal stability compared to the initial borylated polylactide. © 2021 Society of Industrial Chemistry.  相似文献   

12.
The kinetics of ethylene polymerization with a TiCl4/MgCl2‐type Ziegler–Natta catalyst was studied. Changes in polymerization activity and concentration of active centers ([C*]) in the first 5 min were determined. Initiation of the active centers was found to proceed in two stages. In the first stage, [C*]/[Ti] quickly rose to about 1% in less than 30 s and then remained stable in the subsequent 60 s. Then the [C*]/[Ti] value started to increase again, forming the second buildup stage. The polymerization activity was found to change roughly in parallel with the change in [C*]/[Ti]. Changes in the polymer/catalyst particle morphology and polymer molecular weight distribution with polymerization time were studied. A mechanistic model was proposed to explain the two‐stage kinetics: initiation of active sites on the outer surface of catalyst particles takes place in the first stage, and initiation of active sites buried inside the particles takes place in the second stage. These buried sites are released when the catalyst particles are fragmented by the expanding polymer phase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45187.  相似文献   

13.
The effects of the stereospecificity of a polymer chain and of the interaction in polypropylene (PP) solutions on the relation between liquid-liquid phase separation and crystallization were investigated by using an isotactic PP (i-PP) and a syndiotactic PP (s-PP) of high stereoregularity and of similar molar mass. Dialkyl phthalate was used as a solvent. A series of dialkyl phthalates with a different number of carbon atoms in the alkyl chain was employed to control the interaction between polymer and solvent. Phase transition temperatures were measured by optical microscopy with a hot stage. Liquid-liquid phase separation temperature (TL-L) in the system of i-PP and dihexyl phthalate was located below its melting temperature (Tm). However, TL-L for the s-PP system in the same solvent was elevated much above its Tm due to a decreased Tm and increased TL-L. The reduced solubility of s-PP is primarily attributed to enhanced hydrophobicity arising from alternate positioning of the methyl groups along the polymer chain. As the length of the alkyl chain in the phthalate increases, TL-L decreases significantly and Tm decreases slightly, resulting in the value of TL-L shifting below that of Tm for the solution of s-PP and dinonyl phthalate. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 159–163, 1998  相似文献   

14.
Thermal stability of a recently synthesized polymeric methyl‐di(phenylethynyl)silane (MDPES) resin was studied using a number of thermal and spectrometric analytical techniques. The polymer exhibits extremely high thermal stability. Thermogravimetric analysis (TGA) shows that the temperature of 5% weight loss (Td5) was 615°C and total weight loss at 800°C was 8.9%, in nitrogen atmosphere, while in air, Td5 was found to be 562°C, and total weight loss at 800°C was found to be 55.8% of the initial weight. Differential thermal degradation (DTG) studies show that the thermal degradation of MDPES resin was single‐stage in air and two‐stage in nitrogen. The thermal degradation kinetics was studied using dynamic TGA, and the apparent activation energies were estimated to be 120.5 and 114.8 kJ/mol in air, respectively, by Kissinger and Coats–Redfern method. The white flaky pyrolysis residue was identified to be silicon dioxide by FTIR and EDS, indicating that the thermal stability of polymer may be enhanced by the formation of a thin silicon dioxide film on the material surface. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 103: 605–610, 2007  相似文献   

15.
Polymerization of vinyl chloride (VC) with a Cp*Ti(OPh)3/MAO catalyst in toluene was investigated. The polymerization rate was lower than that in CH2Cl2, and the mm triad concentration of the PVC obtained in toluene was somewhat higher than that of the PVC obtained in CH2Cl2. As the polymerization in toluene proceeded at a considerable rate, a kinetic study of this polymerization was undertaken. The polymer yield increased with reaction time, and the molecular weight of the polymer increased with increasing polymer yield. The Mw/Mn ratio of the polymer decreased with increasing polymerization temperature. The initiator efficiency of the catalyst was low at the initial stage of the polymerization in toluene, but it reached nearly 100% when the polymerization was carried out for more than 30 h. The control of both themolecular weight of PVC and its main‐chain structure was found to be possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst in toluene. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
Heterogeneous film‐forming latexes were prepared using two‐stage, seeded emulsion polymerization. The polymerization was performed in a calorimetric reactor with a control unit that monitored the reaction rate and controlled the charging rate of the monomers. Three types of styrene seed latexes were prepared at 70°C. The first was an unmodified polystyrene (PS) latex. The second had the molecular weight lowered by the use of carbon tetrachloride (CCl4) as a chain‐transfer agent, added at the start of the polymerization. For the third one, divinylbenzene (DVB) was used as a comonomer. DVB was added under starved conditions near the end of the polymerization to achieve crosslinked particle shells and to introduce double bonds as possible grafting sites. The second polymerization step was performed at 80°C as a batch operation in a 200‐mL calorimeter reactor. The second‐stage polymer was poly(styrene‐co‐butadiene‐co‐methacrylic acid) (S/B/MAA). A fixed S/B ratio was used together with varying small amounts of MAA. Particle morphology and particle‐size distributions were examined after the second stage using TEM after staining with osmium tetroxide. The particle morphology was found to depend on both the seed composition and the amount of MAA used in the second stage. Molecular weight and crosslinking of the DVB‐containing seed influenced the internal particle viscosity, which gave differences in the polymerization rate and the particle morphology. Crosslinking of the second‐stage polymer decreased the monomer concentration in the particles, which could be detected as a change in the slope the pressure/conversion curve. This phenomenon was used to indicate the critical conversion for crosslinking of the second‐stage polymer. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 297–311, 2000  相似文献   

17.
Microemulsion polymerization is a new approach for preparing nanosize polymer materials. In this article, a nanosize poly(methyl methacrylate) (PMMA) was prepared by a novel microemulsion polymerization. The kinetics of the polymerization and the effects of the temperature, the monomer, and emulsifier/water ratio on the polymerization were investigated by means of the conversion, the transmittance, and the refractive index measurements. The structure of the obtained PMMA microlatex was studied through transmission electron microscopy (TEM), nuclear magnetic resonance (1H‐NMR), and differential scanning calorimetry (DSC). The results show that the polymerization exhibits typical kinetic characteristics of a microemulsion polymerization, i.e., there only exists two rate stages: a stage of increasing rate, and a stage of decreasing rate, and no constant rate stage is observed during the polymerization. The obtained PMMA microparticles are very uniform, regular, and small, being about 17–33 nm in the number‐average diameter. The polymer has higher molecular weight (1.71 × 106 viscosity average molecular weight), higher tacticity (51% syndiotacticity), and higher glass transition temperature (127°C), much different from the commercial PMMA. Experimentally, a stable and transparent PMMA microlatex with higher polymer content (30–40 wt %), lower weight ratio of emulsifier to water (E/W ≤ 0.03) and emulsifier to monomer (E/M ≤ 0.05) as well as smaller particle size (dp < 40 nm), has been prepared, which is very important for the industrialization of the microemulsion polymerization technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2839–2844, 2002  相似文献   

18.
Methacrylate monomer containing a photodimerizable α,β‐unsaturated ketone moiety was prepared and polymerized in ethyl methyl ketone at 70 °C using benzoyl peroxide as an initiator. The polymer was characterized by UV, IR, 1H NMR and 13C NMR spectra. The molecular weights (M w and M n) of the polymer were determined by gel permeation chromotography. The thermal stability of the polymer was measured by thermogravimetric analysis in air and nitrogen. The glass transition temperature of the polymer was determined by differential scanning calorimetry. The photo reactivity of the polymer was investigated as thin film and in solution. © 2000 Society of Chemical Industry  相似文献   

19.
Summary Novel through-spaceπ-conjugated polymer based on poly(p-henyleneethynylene)/poly(p-phenylenebutadiynylene) hybrids containing a [2.2]paracyclophane unit in the main chain was synthesized by copper-catalyzed alkyne coupling reaction. The structure of the polymer was supported by 1H NMR and IR spectra. The obtained polymer was soluble in common organic solvents such as THF, CH2C12, CHC13 and toluene. The number-average of molecular weight of the polymer was estimated to be 63000 by GPC. The polymer emitted a bluish green light in solution and in the solid state. Received:24 September 2002/Revised version: 19 November 2002/Accepted: 19 November 2002 Correspondence to Yoshiki Chujo  相似文献   

20.
Summary Cationic polymerization of p-methoxystyrene initiated by HI/ZnI2 in toluene afforded living polymers not only at low temperature (–15°C) but at room temperature (+25°C) as well. The number-average molecular weight of the polymers was directly proportional to monomer conversion and in excellent agreement with the calculated value assuming that one polymer chain forms per unit hydrogen iodide. On addition of a fresh feed of monomer at the end of the first-stage polymerization, the added feed was smoothly polymerized at nearly the same rate as in the first stage; the polymer molecular weight further increased in direct proportion to monomer conversion and was close to the calculated value for living polymer. Throughout these reactions, the molecular weight distribution of the polymers stayed very narrow (¯Mw/¯Mn<1.1). This is the first example of living cationic polymerizations of styrene derivatives that proceed even at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号