首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高温钛合金Ti150是能在600℃环境下长期服役的新型高温钛合金,TC19钛合金是一种富β的α+β两相钛合金,具有高强度、高韧性的特点。采用Ti-21Cu-13Zr-9Ni(wt.%)非晶合金箔带作为钎料,进行了Ti150高温钛合金与TC19钛合金的真空钎焊连接工艺研究。通过扫描电镜分析接头组织,利用万能试验机测试接头室温和高温拉伸强度。结果表明:在930℃/35 min钎焊条件下,接头室温抗拉强度955.3 MPa,500℃高温抗拉强度达到540.0 MPa,550℃高温抗拉强度达到505.6 MPa,接头室温拉伸试样断裂于焊缝,断口总体为脆性断裂,接头高温500℃、550℃拉伸试样均断于Ti150基体上或近Ti150端面上,Ti150基体端断口有明显的延伸塑性变形。  相似文献   

2.
钛合金具有比强度高、热强度高、耐腐蚀性能和高温性能好等优点,成为航空航天飞行器的主要结构材料之一。随着航空发动机性能的提升,对钛合金的使用温度提出了更高的要求。到目前为止,世界上成熟使用的高温钛合金的最高使用温度为600℃,如美国的Ti1100合金,英国的IMI829、IMI834合金及俄罗斯的BT18Y、BT36合金等。重点介绍了国际上几种典型的高温钛合金的性能特点,以期为我国高温钛合金的研发和应用提供一些思路。  相似文献   

3.
主要研究了冷变形程度、真空退火温度和时间对TA16钛合金管材组织性能的影响。结果表明:冷轧管材的再结晶开始温度不高于600℃;在650~800℃之间退火,退火温度的变化对TA16钛合金的力学性能影响不明显;随冷变形量增加,管材强度值上升,塑性值下降,加工率达70.9%时,管材仍有8%的延伸塑性,高温(200~400℃)下,材料强度和塑性均处于相对稳定的区域。  相似文献   

4.
正钛合金因其具有质轻、高强及高温力学性能优异特性,是高推重比先进航空发动机压气机叶片首选材料。然而,钛合金抗高温氧化和热腐蚀性差,高温氧化环境下,必将造成钛合金压气机叶片因严重高温氧化和热腐蚀失效,降低发动机效率,造成严重事故。戴景杰团队在钛合金表面设计了系列高温防护涂层,并对涂层在800 ℃下1 000 h的循环高温氧化行为和800 ℃下300 h的热腐蚀行为进行了研究,构建了涂层在高温氧化和热腐蚀行为下的损伤模型,阐明了涂层在高温-  相似文献   

5.
BTi-421111是一种新型研制的中等强度塑性良好的钛合金。本文通过研究BTi-421111钛合金8.0 mm厚板在热态R、750℃/1 h、780℃/1 h、810℃/1 h、840℃/1 h不同状态下的显微组织与性能,优选出合适的热处理温度范围为780~840℃;并对840℃/1 h与940℃/1 h WQ+760℃/4 h两种不同热处理工艺下板材的显微组织与性能进行对比。实验结果表明:板材经780~840℃温度热处理后呈均匀的两相区,达到良好的组织与性能的匹配;840℃/1 h热处理后板材横向具有更高的强度和冲击性能,而940℃/1 h WQ+760℃/4 h热处理后板材具有良好的塑性。  相似文献   

6.
通过拉伸试验和差示扫描量热法(DSC)等手段,研究了高温时效和高温、低温循环对镍钛形状记忆合金超弹性和相变行为的影响。结果表明,TNC1605镍钛合金在500℃时效后具有较高的上/下平台强度,并且具有较低的残余应变,马氏体逆相变终了温度Af约为22℃,具有较好的超弹性能。经过10次200℃高温保温4 h和液氮中保温4 h的高低温循环处理后,下平台强度、6%拉伸加载和卸载后残余应变、Af和超弹性性能参数保持稳定。  相似文献   

7.
《焊接》2016,(5)
TC4钛合金是一种中等强度的α-β型双相钛合金,具有优异的综合性能,长时间工作温度可达到400℃。文中针对TC4钛合金复杂精密构件设计制造可能的需求,采用Ti-21Cu-13Zr-9Ni钎料对TC4合金进行了真空钎焊。通过扫描电镜与能谱等手段,对钎焊接头界面的元素分布及钎焊接头的组织进行分析;同时测试了接头室温和高温力学性能。试验结果表明,采用Ti-21Cu-13Zr-9Ni钎料钎焊TC4钛合金合理可行;采用Ti-21Cu-13Zr-9Ni钎料930℃/10 min钎焊TC4钛合金的钎焊接头,通过930℃/40 min扩散处理后,钎焊接头室温、高温400℃和600℃抗拉强度分别达到930 MPa、610 MPa、400 MPa;基本等强于同一热循环的母材抗拉强度。采用Ti-21Cu-13Zr-9Ni钎料930℃/10 min钎焊TC4钛合金的钎焊接头,通过930℃/40 min扩散处理后,其钎焊接头的冲击性能有明显提高。  相似文献   

8.
Ti65钛合金具有优良的高温强度、热稳定性与抗蠕变性能,但其热成形温度高、变形抗力大。热氢处理作为一种钛合金高温增塑工艺,可以显著降低Ti65钛合金高温成形时的变形抗力,改善其热加工性能。为了研究置氢量对Ti65钛合金高温流变行为和热加工性能的影响,探究Ti65钛合金最佳置氢量和成形工艺窗口,对不同置氢量下的Ti65钛合金试样进行热压缩实验。结果表明,置氢Ti65钛合金在790~940℃温度范围内变形时,最佳置氢量(质量分数)为0.25%,与未置氢钛合金相比,峰值应力的降幅约为66.8%。基于真应力-真应变曲线数据,建立了0.25%置氢量时Ti65钛合金的Arrhenius本构方程,以及真应变为0.2、0.4和0.6条件下的热加工图。研究发现,Ti65钛合金在840~880℃、应变速率大于0.01 s-1区域附近变形时,出现失稳现象,随着应变的增大,失稳区域收缩;而在790~840℃、应变速率为0.01~1 s-1区域内变形时,具备良好的热加工性能。  相似文献   

9.
研究了在应变速率0.001 s-1条件下,TLM钛合金在室温压缩和850℃热压缩的形变机理和组织演变规律。实验结果表明:TLM钛合金在冷压缩和热压缩条件下具有不同的形变机理和组织演变规律。在冷压缩过程中,TLM钛合金的形变特征主要是孪生、应力诱发马氏体转变及位错滑移;在850℃热压缩过程中,TLM钛合金的形变机理主要是位错滑移、动态回复和动态再结晶。在热压缩过程中,流变应力的软化过程与压缩过程中的动态回复和动态再结晶有关。TLM钛合金在冷压缩和热压缩条件下的抗压缩强度分别为975和40 MPa;相比冷压缩强度,TLM合金在850℃条件下的热抗压缩强度降低了96%。  相似文献   

10.
研究了在应变速率0.001 s-1条件下,TLM钛合金在室温压缩和850 ℃热压缩的形变机理和组织演变规律。实验结果表明:TLM钛合金在冷压缩和热压缩条件下具有不同的形变机理和组织演变规律。在冷压缩过程中,TLM钛合金的形变特征主要是孪生、应力诱发马氏体转变及位错滑移;在850 ℃热压缩过程中,TLM钛合金的形变机理主要是位错滑移、动态回复和动态再结晶。在热压缩过程中,流变应力的软化过程与压缩过程中的动态回复和动态再结晶有关。TLM钛合金在冷压缩和热压缩条件下的抗压缩强度分别为975和40 MPa;相比冷压缩强度,TLM合金在850 ℃条件下的热抗压缩强度降低了96%  相似文献   

11.
试验研究了两种不同生产工艺流程、不同热处理制度及不同冷轧加工量对TA18钛合金板材组织和室温、高温力学性能的影响。结果表明:TA18钛合金板材生产过程中采用换向+β热处理工艺流程,可实现板材的横、纵向力学性能差异较小,且板材强度较高;随加工量增大,冷轧阶段板材强度降低,伸长率升高。TA18钛合金板材采用680~740℃的热处理制度,均可得到均匀的等轴组织。当退火温度高于720℃,晶粒开始长大,强度下降,伸长率提高。  相似文献   

12.
研究了TA7钛合金板材热加工态和经750、800、850℃3种不同温度热处理后的显微组织、室温拉伸性能、弯曲性能、高温拉伸性能和高温持久性能。结果表明,热加工态TA7钛合金板材横向存在不均匀组织,纵向有较多拉长α晶粒;经750℃热处理后板材拉长α晶粒转变为等轴状;经800℃热处理后板材横向与纵向均为均匀、细小的等轴组织;经850℃热处理后板材晶粒发生长大。热处理后板材强度降低,塑性增加,弯曲性能和高温持久性能均满足GJB 2505A—2018标准要求;随着热处理温度的升高,板材室温拉伸强度和高温拉伸强度均逐渐降低,经850℃热处理后板材的500℃高温拉伸强度已不能满足要求。为了获得均匀、细小的组织及良好的力学性能,TA7钛合金板材宜采用800℃热处理。  相似文献   

13.
利用单向拉伸分别测试了高温Ti65钛合金板材原始态、时效态和热变形条件下强度的各向异性,并通过光学显微镜(OM)、电子背散射衍射(EBSD)和扫描电镜(SEM)观察了各状态的微观组织。结果表明:原始态Ti65钛合金板材RD方向具有最高强度,45°方向的强度最低,主要原因是含有沿着RD方向被拉长的α相和较强的晶体学织构:(0001)//RD-TD面和<01■0>//RD的轧制织构。经过790℃的时效后,因为α相发生了一定的粗化,纤维组织弱化导致Ti65板材TD方向拥有最高强度。在790℃中热抗拉强度大幅度降低,且各向异性发生明显变化,TD方向强度明显高于其它2个方向,主要因为α相中各滑移系的临界剪切应力随温度的升高而大幅度降低,且不同滑移系的降幅不同。另外高温变形中存在着更强的回复和再结晶。断口观察发现,室温下Ti65钛合金板材断裂机制是以韧窝为主的韧性断裂,而790℃的断裂是由分散的微孔洞相互连接的断裂机制。  相似文献   

14.
研究了TA15钛合金大型锻坯的工艺、组织与性能。结果表明:在940~970℃加热锻造,TA15钛合金组织对加热温度敏感,随着温度的提高,初生α相含量减小,合金的室温和500℃高温强度均降低,塑性几乎保持不变,冲击韧性小幅提升;在760~840℃退火,随着温度的提升,细针状α相弥散析出,强度提升,塑性和冲击韧性变化小。锻坯锻造加热温度应控制在950℃,退火温度选择840℃。  相似文献   

15.
研究两种热加工工艺对BTi-6431S高温钛合金厚板显微组织和力学性能的影响。结果表明,(α+β)轧制的厚板组织类型为类似于等轴的两相区加工组织,β轧制的该合金厚板的显微组织为典型的细片状魏氏组织,该组织厚板的室温和高温强度明显高于α+β轧制厚板的,而塑性稍低;该合金厚板在650℃时具有较高的高温瞬时强度,可用于宇航工业650℃短时用结构件的制作。  相似文献   

16.
利用Gleeble-1500D热模拟试验机对TA10钛合金在变形温度为800~1050℃,应变速率为0.01~5 s-1条件下进行拉伸变形,研究合金的流变应力及显微组织,分析其高温拉伸性能。结果表明:变形温度为800~900℃时,流变曲线有明显的应力峰值,软化机制主要是动态再结晶;而变形温度为1000~1050℃时,流变曲线没有明显的应力峰值,软化机制为动态回复;而当变形温度为800℃时,TA10钛合金的应变速率越高动态再结晶的进行程度越低;以(α+β/β)相变点为界,在相变点以下的温度区间,随着变形温度的升高,TA10钛合金的强度和塑性下降;在相变点以上的温度区间,TA10钛合金的强度下降,塑性上升;而在相变点的过渡区间,强度上升,塑性下降。当应变速率一定时,TA10钛合金在温度为800℃时能够获得强度和塑性的较好匹配。  相似文献   

17.
通过显微组织观察和力学性能测定对高Mo当量BT25y钛合金经二重和三重热处理后的室温和650℃拉伸性能和冲击韧性与显微组织之间的关系进行了分析和研究.结果表明,BT25y钛合金在650℃下的拉伸强度与目前几种600℃高温钛合金在600℃下的拉伸强度相当;增加Mo当量可以提高650℃下的拉伸强度;通过三重热处理可以明显提高BT25y钛合金的冲击韧性.  相似文献   

18.
研究不同热处理工艺下Ti-Al-Sn-Zr-W-Si高温钛合金的蠕变性能。结果表明,Ti-Al-Sn-Zr-W-Si高温钛合金最佳的热处理工艺为1 010℃保温1 h淬火,550℃保温4 h回火。在550℃、300 MPa条件下,Ti-Al-Sn-Zr-WSi高温钛合金试件的持久时间超过了1 000 h,其蠕变性能超过其他钛合金。  相似文献   

19.
《锻压技术》2021,46(9):22-33
TC系列钛合金是航空航天飞机关键零部件制造的重要材料。主要综述了近年来笔者团队在TC系列典型钛合金的高温流变行为与本构描述、热变形的微观组织/织构演变规律、热加工工艺窗口的优化及微观组织的调优技术方面的研究进展。结果表明:初始组织对TC系列钛合金流变行为及变形机制的影响显著;TC系列钛合金的高温流变行为表征模型主要有唯象学本构模型、基于物理机制本构模型和机器学习模型;双道次热压缩能够提高TC系列钛合金的α相球化率和β相再结晶程度;通过优化TC系列钛合金的热成形加工工艺,能够有效地避免变形出现流动失稳与成形缺陷;TC系列钛合金热成形过程中微观组织演变的多尺度模拟、热成形-固溶处理-时效处理对组织性能的综合影响机制及规律有待深入研究。  相似文献   

20.
采用光学显微镜、扫描电子显微镜和透射电子显微镜和室温拉伸实验,研究500℃不同时间热暴露对TC11钛合金组织及性能的影响。结果表明:经500℃高温长时间暴露后,TC11钛合金的室温拉伸强度略微增加,而塑性明显下降,随着暴露时间的延长,塑性下降趋势减缓;热暴露400 h后,抗拉强度(σb)提高了30 MPa,断面收缩率(ψ)降低了11.74%。热暴露过程中,合金塑性的降低主要是硅化物和α2相协同作用的结果,其中α2相对力学性能的影响起主导作用;α2相的稳定化和长大过程是合金塑性下降的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号