首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly (ɛ‐caprolactone)–chitosan–poly (vinyl alcohol) (PCL: Cs: PVA) nanofibrous blend scaffolds were known as useful materials for skin wound healing and would help the healing process about 50% faster at the final time point. From the previous studies by the authors, PCL: Cs: PVA (in 2: 1: 1.5 mass ratio) nanofibres showed high efficacy in healing on rat models. In this study, the scaffolds were examined in burn and excision wounds healing on dogs as bigger models. The scaffolds were applied on dorsum skin wounds (n  = 5) then macroscopic and microscopic investigations were carried out to measure the wounds areas and to track healing rate, respectively. Macroscopic results showed good aspect healing effect of scaffolds compared with control wounds especially after 21 days post‐operating for both cutting and burn wounds. Pathological studies showed that the healing rates of the wounds covered with PCL: Cs: PVA nanofibrous scaffolds were much rapid compared to untreated wounds in control group. The immunogenicity of the scaffolds in canine model was also investigated. The findings showed that nanofibrous blend scaffolds was not immunogenic in humoural immune responses. All these results indicated that PCL: Cs: PVA nanofibrous web could be considered as promising materials for wounds healings.Inspec keywords: nanofibres, nanomedicine, biomedical materials, polymer fibres, polymer blends, skin, woundsOther keywords: poly(ε‐caprolactone)‐chitosan‐poly (vinyl alcohol) nanofibrous blend scaffolds, skin excisional wounds, burn wounds, canine model, skin wound healing, dorsum skin wounds, macroscopic investigations, microscopic investigations, healing rate, cutting wounds, pathological study, humoural immune responses, nanofibrous web, immunogenicity, time 21 day  相似文献   

2.
There is a great need for the progress of composite biomaterials, which are effective for tissue engineering applications. In this work, the development of composite electrospun nanofibres based on polycaprolactone (PCL) and collagen hydrolysate (CH) loaded with ferulic acid (FA) for the treatment of chronic wounds. Response Surface Methodology (RSM) has been applied to nanofibres factor manufacturing assisted by electrospinning. For wound healing applications, the authors have created the efficacy of CH, and PCL membranes can act as a stable, protective cover for wound, enabling continuous FA release. The findings of the RSM showed a reasonably good fit with a polynomial equation of the second order which was statistically acceptable at P  < 0.05. The optimised parameters include the quantity of hydrolysate collagen, the voltage applied and the distance from tip‐to‐collector. Based on the Box–Behnken design, the RSM was used to create a mathematical model and optimise nanofibres with minimum diameter production conditions. Using FTIR, TGA and SEM, optimised nanofibres were defined. In vitro, cytocompatibility trials showed that there was an important cytocompatibility of the optimised nanofibres, which was proved by cell proliferation and cell morphology. In this research, the mixed nanofibres of PCL and CH with ferulic could be a potential biomaterial for wound healing.Inspec keywords: tissue engineering, polymer fibres, wounds, electrospinning, nanofibres, response surface methodology, cellular biophysics, proteins, molecular biophysics, scanning electron microscopy, biomedical materials, nanomedicine, nanocomposites, nanofabrication, Fourier transform infrared spectraOther keywords: wound healing applications, PCL membranes, stable cover, protective cover, continuous FA release, RSM, optimised parameters, hydrolysate collagen, mathematical model, optimised nanofibres, polycaprolactone nanofibres, tissue engineering applications, composite biomaterials, composite electrospun nanofibres, collagen hydrolysate, ferulic acid, chronic wounds, Response Surface Methodology, nanofibres factor  相似文献   

3.
Chitosan‐poly (vinyl alcohol) (Cs: PVA) (2:3) and poly (caprolactone)‐chitosan‐poly (vinyl alcohol) (PCL: Cs: PVA) (2:1:1.5) nanofibrous blend scaffolds were fabricated using the electrospinning technique in the authors’ previous studies. The results of the previous studies confirmed the high biological properties of the scaffolds and their ability in healing of burn and excision wounds on rat model. In the present study, the biological scaffolds were applied on diabetic dorsum skin wounds and diabetic foot wound on rat models (n = 16). Macroscopic and microscopic investigations were carried out using digital images and haematoxylin and eosin (H&E) staining respectively, to measure the wound areas and to track wound healing rate. It was found that at all time points the areas of wounds treated with nanofibrous scaffolds were smaller compared with the controls. Pathological results showed much better healing efficacy for the test samples compared with the control ones. Pathological investigations proved the presence of more pronounced granulation tissues in the scaffold‐treated wounds compared with the control ones. At 20 days post excision, the scaffold‐treated groups achieved complete repair. The results indicated that Cs: PVA and PCL: Cs: PVA nanofibrous webs could be considered to be promising materials for burn, excision and diabetic wounds healing.Inspec keywords: wounds, diseases, biomedical materials, polymer blends, nanofibres, polymer fibres, nanomedicine, nanofabrication, electrospinning, skin, cellular biophysics, caesium, medical image processing, patient treatmentOther keywords: chitosan‐poly (vinyl alcohol), poly (caprolactone)‐chitosan‐poly (vinyl alcohol), nanofibrous blend scaffolds, electrospinning, biological properties, rat model, diabetic dorsum skin wound healing, diabetic foot wounds, rat models, digital imaging, H&amp;E staining, pathology, granulation tissues, PCL‐Cs‐PVA nanofibrous webs, excision wound healings, burn wound healings  相似文献   

4.
In this report, a novel wound dressing material has been woven by electrospinning technique and tested for its various properties. For the nanofibre mat, a mixture of polyurethane (PU) and soy protein isolate (SPI) was electrospun in conjugation with zinc oxide nanoparticles (ZnO Nps) and ciprofloxacin hydrochloride (CipHCl) to produce fibrous mats viz. PU/SPI/ZnO and PU/SPI/CipHCl. An optimum ratio (1 : 1) of PU/SPI was used as suitable polymeric ratio in order to produce homogenous nanofibres without beads having an average diameter in the range of 300–350 nm. The electrospun nanofibre‐based mats were characterised using X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis and scanning electron microscope. The mechanical properties of the nanofibrous mats were tested using universal testing machine. The wettability analysis was done using the contact angle measurement based on the sessile drop test. This study revealed that the electrospun PU/SPI‐based nanofibres are non‐sensitizing, non‐allergic and non‐toxic and that it can be used as a peculiar wound healing material.Inspec keywords: polymer fibres, nanofibres, nanomedicine, biomedical materials, wounds, electrospinning, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, X‐ray diffraction, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, thermal analysis, scanning electron microscopy, wetting, contact angle, toxicologyOther keywords: electrospun polyurethane nanofibres, soy protein nanofibres, wound dressing applications, electrospinning, nanofibre mat, soy protein isolate, zinc oxide nanoparticles, ciprofloxacin hydrochloride, X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis, scanning electron microscope, mechanical properties, universal testing machine, wettability, contact angle measurement, sessile drop test, nonsensitizing nanofibres, nonallergic nanofibres, nontoxic nanofibres, wound healing material, wavelength 300 nm to 350 nm, ZnO  相似文献   

5.
Wound healing has long been recognised as a major clinical challenge for which stablishing more effective wound therapies is necessary. The generation of metallic nanocomposites using biological compounds is emerging as a new promising strategy for this purpose. In this study, four metallic nanoparticles (NPs) with propolis extract (Ext) and one without propolis including ZnO/Ext, ZnO/Ag/Ext, ZnO/CuO/Ext, ZnO/Ag/CuO/Ext and ZnO/W were prepared by microwave method and assessed for their wound healing activity on excision experimental model of wounds in rats. The developed nanocomposites have been characterised by physico‐chemical methods such as X‐ray diffraction, scanning electron microscopy, diffuse reflectance UV–vis spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and Brunauer–Emmett–Teller analyses. The wounded animals treated with the NPs/Ext in five groups for 18 days. Every 6 days, for measuring wound closure rate, three samples of each group were examined for histopathological analysis. The prepared tissue sections were investigated by haematoxylin and Eosin stainings for the formation of epidermis, dermis and muscular and Masson''s trichrome staining for the formation of collagen fibres. These findings toughly support the probability of using this new ZnO/Ag/Ext materials dressing for a wound care performance with significant effect compared to other NPs.Inspec keywords: nanomedicine, X‐ray diffraction, II‐VI semiconductors, visible spectra, ultraviolet spectra, nanocomposites, biomedical materials, proteins, wounds, nanoparticles, scanning electron microscopy, nanofabrication, skin, zinc compounds, silver, antibacterial activity, Fourier transform infrared spectra, copper compounds, molecular biophysicsOther keywords: propolis, wound healing applications, effective wound, metallic nanocomposites, biological compounds, metallic nanoparticles, microwave method, wound healing activity, physico‐chemical methods, Fourier transform infrared spectroscopy, diffuse reflectance UV‐vis spectroscopy, Brunauer‐Emmett‐Teller analyses, wounded animals, wound closure rate, wound care performance, histopathological analysis, scanning electron microscopy, X‐ray diffraction, thermogravimetric analysis, haematoxylin, Eosin stainings, Masson trichrome, epidermis, muscular trichrome, collagen fibres, time 18.0 d, time 6.0 d, ZnO‐CuO‐Ag  相似文献   

6.
In tissue engineering, scaffolds with multiscale functionality, especially with the ability to release locally multiple or specific bioactive molecules to targeted cell types, are highly desired in regulating appropriate cell phenotypes. In this study, poly (epsilon-caprolactone) (PCL) solutions (8% w/v) containing different amounts of bovine serum albumin (BSA) with or without collagen were electrospun into nanofibres. As verified by protein release assay and fluorescent labelling, BSA and collagen were successfully incorporated into electrospun nanofibres. The biological activity of functionalised fibres was proven in the cell culture experiments using human dermal fibroblasts. By controlling the sequential deposition and fibre alignment, 3D scaffolds with spatial distribution of collagen or BSA were assembled using fluorescently labelled nanofibres. Human dermal fibroblasts showed preferential adhesion to PCL nanofibres containing collagen than PCL alone. Taken together, multiscale scaffolds with diverse functionality and tunable distribution of biomolecules across the nanofibrous scaffold can be fabricated using electrospun nanofibres.  相似文献   

7.
The bio‐green methods of synthesis nanoparticles (NPs) have advantages over chemo‐physical procedures due to cost‐effective and ecofriendly products. The goal of current investigation is biosynthesis of zinc oxide NPs (ZnO‐NPs) and evaluation of their biological assessment. Water extract of Brassica napus pollen [rapeseed (RP)] prepared and used for the synthesis of ZnO‐NPs and synthesised ZnO‐NP characterised using ultraviolet–visible, X‐ray diffraction, Fourier‐transform infrared spectroscopy, field emission scanning electron microscope and transmission electron microscope. Antioxidant properties of ZnO‐NPs, cytotoxic and pro‐apoptotic potentials of NPs were also evaluated. The results showed that ZnO‐NPs have a hexagonal shape with 26 nm size. ZnO‐NPs synthesised in RP (RP/ZnO‐NPs) exhibited the good antioxidant potential compared with the butylated hydroxyanisole as a positive control. These NPs showed the cytotoxic effects against breast cancer cells (M.D. Anderson‐Metastasis Breast cancer (MDA‐MB)) with IC50 about 1, 6 and 6 μg/ml after 24, 48 and 72 h of exposure, respectively. RP/ZnO‐NPs were found effective in increasing the expression of catalase enzyme, the enzyme involved in antioxidants properties of the cells. Bio‐green synthesised RP/ZnO‐NPs showed antioxidant and cytotoxic properties. The results of the present study support the advantages of using the bio‐green procedure for the synthesis of NPs as an antioxidant and as anti‐cancer agents.Inspec keywords: II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, toxicology, X‐ray diffraction, biochemistry, zinc compounds, nanomedicine, enzymes, biomedical materials, particle size, antibacterial activity, transmission electron microscopy, molecular biophysics, visible spectra, nanofabrication, cellular biophysics, nanoparticles, cancer, field emission scanning electron microscopy, Fourier transform infrared spectra, semiconductor growthOther keywords: bio‐green synthesis ZnO‐NPs, zinc oxide NPs, synthesised ZnO‐NP, field emission scanning electron microscope, transmission electron microscope, antioxidant properties, bio‐green synthesised RP‐ZnO‐NPs, Fourier‐transform infrared spectroscopy, X‐ray diffraction, breast cancer cells MDA‐MB, pro‐apoptotic potentials, cytotoxic effects, catalase enzyme, bio‐green procedure, time 48.0 hour, time 72.0 hour, size 26.0 nm, time 24.0 hour, ZnO  相似文献   

8.
Nanotechnology is an emerging field of science that applies particles between 1 and 100 nm in size for a range of practical uses. Nano‐technological discoveries have opened novel applications in biotechnology and agriculture. Many reactions involving nanoparticles (NPs) are more efficient compared to those of their respective bulk materials. NPs obtained from plant material, denoted as biogenic or phytosynthesised NPs, are preferred over chemically synthesised NPs due to their low toxicity, rapid reactions and cost‐effective production. NPs impart both positive and negative impacts on plant growth and development. NPs exhibit their unique actions as a function of their size, reactivity, surface area and concentration. An insight into NP biosynthesis and translocation within the plant system will shed some light on the roles and mechanisms of NP‐mediated regulation of plant metabolism. This review is a step towards that goal.Inspec keywords: nanofabrication, nanoparticles, nanobiotechnology, particle size, reviews, botany, biochemistryOther keywords: chemically synthesised NPs, low toxicity, rapid reactions, cost‐effective production, positive impacts, plant growth, translocation, plant system, plant metabolism, nanotechnological discoveries, biotechnology, agriculture, plant material, biogenic NPs, phytosynthesised NPs, bulk materials, nanoparticles, biosynthesis, surface area, review, size 1.0 nm to 100.0 nm  相似文献   

9.
In the present study, silver (Ag) and Ag–zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound‐healing efficacy on rat model. Ultraviolet–visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X‐ray diffraction analysis Ag–ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face‐centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag–ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi‐hexagonal NPs with distribution of particle size of 20–40 nm. Furthermore, the authors investigated the wound‐healing properties of Ag–ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.Inspec keywords: wounds, tissue engineering, biomedical materials, nanocomposites, nanofabrication, nanomedicine, silver, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, visible spectra, nanoparticles, particle size, surface plasmon resonance, spectral line shift, X‐ray diffraction, scanning electron microscopy, transmission electron microscopyOther keywords: enhanced wound healing activity, Ag‐ZnO composite nanoparticles, Wistar Albino rats, wound‐healing efficacy, ultraviolet‐visible spectroscopy, intense surface plasmon resonance absorption, aqueous Zn acetate solution, SP resonance band, blue shift, X‐ray diffraction analysis, diffraction peaks, face‐centred cubic structures, scanning electron microscope, SEM, transmission electron microscope, TEM, monodispersed hexagonal nanoparticles, quasihexagonal nanoparticles, particle size, animal model, time 10 d, size 20 nm to 40 nm, Ag‐ZnO  相似文献   

10.
Umbilical cord‐derived mesenchymal stem cells (UCDMSC) are attractive candidates for cell‐based regenerative medicine. However, they are susceptible to replicative senescence during repetitive passaging for in‐vitro expansion and induced senescence in an oxidative, inflammatory microenvironment in vivo. Aim of this study is to investigate if honey‐incorporated matrices can be employed to reduce senescence of UCDMSC. Matrices were prepared by electrospinning solutions of honey with poly‐vinyl alcohol (PVA). PVA:honey matrices exhibited free radical scavenging activity. Culture of UCDMSC on PVA:honey matrices showed improvement in cell proliferation compared to pure PVA nanofibres. Expression of vimentin indicated that mesenchymal phenotype is preserved after culturing on these matrices. Further, UCDMSC were serially subcultured and cells of two passages (P2 and P6) were evaluated for reactive oxygen species (ROS) load and senescence parameters. P6 cells showed a higher ROS load and β‐galactosidase (β‐gal) positive senescent cells compared to P2. However, culturing on PVA:honey substrates significantly reduced both ROS and β‐gal markers compared to cells on PVA substrates. Honey contains several antioxidant and anti‐inflammatory components, which can reduce the ROS‐related senescence. Thus, it is concluded that honey containing nanofibres can be effective substrates for stem cell‐based wound healing and regenerative medicine.Inspec keywords: molecular biophysics, nanofibres, nanomedicine, polymer fibres, cellular biophysics, nanofabrication, enzymes, biochemistry, electrospinning, wounds, biomedical materialsOther keywords: pure PVA nanofibres, UCDMSC, PVA:honey substrates, PVA substrates, ROS‐related senescence, honey containing nanofibres, stem cell‐based wound healing, honey‐incorporated nanofibre, replicative senescence, umbilical cord‐derived mesenchymal stem cells, cell‐based regenerative medicine, induced senescence, PVA:honey matrices, cell proliferation, honey‐incorporated matrices, electrospinning solutions, poly‐vinyl alcohol, free radical scavenging activity, vimentin expression, mesenchymal phenotype, reactive oxygen species load, senescence parameters, P6 cells, β‐galactosidase positive senescent cells, β‐gal markers, antiinflammatory components, antioxidant components  相似文献   

11.
In this study, we investigated whether the nanofibers produced by natural‐synthetic polymers can probably promote the proliferation of co‐cultured adipose‐derived stem cells/human fibroblast cells (ADSs/HFCs) and synthesis of collagen. Nanofiber was fabricated by blending gelatin and poly (L‐lactide co‐ɛ‐caprolactone) (PLCL) polymer nanofiber (Gel/PLCL). Cell morphology and the interaction between cells and Gel/PLCL nanofiber were evaluated by FESEM and fluorescent microscopy. MTS assay and quantitative real‐time polymerase chain reaction were applied to assess the proliferation of co‐cultured ADSs/HFCs and the collagen type I and III synthesis, respectively. The concentrations of two cytokines including fibroblast growth factor‐basic and transforming growth factor‐β1 were also measured in culture medium of co‐cultured ADSs/HDCs using enzyme‐linked immunosorbent assay assay. Actually, nanofibers exhibited proper structural properties in terms of stability in cell proliferation and toxicity analysis processes. Gel/PLCL nanofiber promoted the growth and the adhesion of HFCs. Our results showed in contact co‐culture of ADSs/HFCs on the Gel/PLCL nanofiber increased cellular adhesion and proliferation synergistically compared to non‐coated plate. Also, synthesis of collagen and cytokines secretion of co‐cultured ADSs/HFCs on Gel/PLCL scaffolds is significantly higher than non‐coated plates. To conclude, the results suggest that Gel/PLCL nanofiber can imitate physiological characteristics in vivo and enhance the efficacy of co‐cultured ADSs/HFCs in wound healing process.Inspec keywords: biomedical materials, enzymes, adhesion, fluorescence, polymer fibres, tissue engineering, wounds, nanofibres, cellular biophysics, molecular biophysics, gelatin, biochemistry, nanomedicine, field emission scanning electron microscopy, nanofabricationOther keywords: cell morphology, cell proliferation, efficient cocultivation, HFCs, ADSs, gelatin‐PLCL nanofiber, natural‐synthetic polymers, cocultured adipose‐derived stem cells‐human fibroblast cells, FESEM, fluorescent microscopy, MTS assay, quantitative real‐time polymerase chain reaction, collagen type I synthesis, collagen type III synthesis, cytokines, transforming growth factor‐β1, fibroblast growth factor‐basic growth factor‐β1, culture medium, enzyme‐linked immunosorbent assay assay, structural properties, toxicity analysis, cellular adhesion, physiological characteristics in vivo, wound healing  相似文献   

12.
The aim of this study is to introduce natural‐based polymers, chitosan and starch, to design a remedial nanocomposite, comprising of cerium oxide nanoparticles and silver nanoparticles, to investigate their effects in accelerating wound healing and in wound microbial load. Cerium oxide nanoparticles synthesized in starch solution added to the colloidal dispersion of synthesized silver nanoparticles in chitosan to make a three‐component nanomaterial. Mice were anaesthetized and two parallel full‐thickness round wounds were excised under aseptic conditions with the help of sterile dermal biopsy punch. Furthermore, effects of silver‐chitosan and silver‐cerium‐chitosan nanocomposite had evaluated on rate of wound closure and collagen density and on microbial load of wound in full‐thickness model. Results showed that both silver chitosan and silver‐cerium‐chitosan had significant impact on acceleration of wound closure and collagen content and on reduction of wound microbial load in comparison with control group, which was, received no treatments. However, the silver‐cerium‐chitosan nanocomposite is more potent than silver‐chitosan group and control group in wound closure. The wound healing effects of silver‐cerium‐chitosan nanocomposite are due to unique features of its three components and this nanocomposite promises impressive remedies for clinical application.Inspec keywords: wounds, nanocomposites, nanomedicine, nanoparticles, proteins, cerium, silver, polymers, colloids, patient treatmentOther keywords: biopolymer‐based nanocomposite wound dressing, wound healing properties, wound microbial load, natural‐based polymers, chitosan, remedial nanocomposite, cerium oxide nanoparticles, nanoceria, silver nanoparticles, starch solution, three‐component nanomaterial, synthesised silver nanoparticles, ketamine intraperitoneal injection, silver‐cerium‐chitosan nanocomposite, wound closure, collagen density, wound healing effects, wound care, aseptic conditions, sterile dermal biopsy punch, Ag‐Ce  相似文献   

13.
Fluconazole (FLZ) application as a highly successful commercial antifungal azole agent to treat the fungal infections is limited due to emergence of FLZ‐resistant candida. In this study, the potential of green synthesised silver nanoparticles (NPs) as an antifungal agent against Candida albicans fungal pathogen is investigated. The extract of ginger (Zingiber officinale) and thyme (Thymus vulgaris) plays as reducing agent, capping agent and antifungal agent. The UV–visible spectroscopy shows the peak of surface plasmon resonance of synthesised Ag NPs after a period of time. The synthesised Ag NPs are spherical, with average sizes of 12 and 18 nm based on ginger and thyme extract, respectively. Fourier transform infrared spectroscopy confirms the adsorption of the plant extract on the surface of the as‐prepared Ag NPs. Based on the minimum inhibitory concentration (MIC) method against Candida albicans, the antifungal activity of as‐prepared green synthesised Ag NPs shows higher inhibitory in comparison to FLZ. Finally, the Ag NPs synthesised via thyme extract shows no cytotoxicity with concentration below 3.5 ppm, which can be considered as an appropriate candidate instead of FLZ to treat the superficial fungal infections.Inspec keywords: nanoparticles, surface plasmon resonance, adsorption, nanofabrication, particle size, silver, ultraviolet spectra, antibacterial activity, visible spectra, microorganisms, nanomedicine, Fourier transform infrared spectra, biomedical materials, diseases, materials preparation, cellular biophysicsOther keywords: green synthesis, cell cytotoxicity, antifungal activity, fluconazole application, FLZ‐resistant candida, green synthesised silver nanoparticles, antifungal agent, surface coating, surface plasmon resonance, superficial fungal infections, Zingiber officinale, UV‐visible spectroscopy, Thymus vulgaris extracts, antifungal azole agent, Candida albicans fungal pathogen, plant extracts, ginger, Fourier transform infrared spectroscopy, minimum inhibitory concentration method, Ag  相似文献   

14.
In this study, chlorhexidine (CHX)–silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram‐positive and Gram‐negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics.Inspec keywords: nanomedicine, nanoparticles, wounds, silver, cellular biophysics, biomedical materials, nanofabrication, microorganisms, antibacterial activityOther keywords: NPs gauze, antimicrobial wound healing applications, hybrid NPs, chlorhexidine–silver hybrid nanoparticles, CHX, coated gauze, bactericidal effect, minimal inhibition concentration, biofilm degradation capacity, Gram‐negative bacteria, wound healing property, wound healing process, in vivo wound healing capacities, Staphylococcus aureus, Escherichia coli, antibiotics administration, Na borohydride, Ag nitrate mixing, sodium metaphosphate, CHX digluconate, NP inhibited biofilm formation, Ag  相似文献   

15.
Currently, nanotechnology and nanoparticles (NPs) are recognised due to their extensive applications in medicine and the treatment of certain diseases, including cancer. Silver NPs (AgNPs) synthesised by environmentally friendly method exhibit a high medical potential. This study was conducted to determine the cytotoxic and apoptotic effects of AgNPs synthesised from sumac (Anacardiaceae family) fruit aqueous extract (AgSu/NPs) on human breast cancer cells (MCF‐7). The anti‐proliferative effect of AgSu/NPs was determined by MTT assay. The apoptotic properties of AgSu/NPs were assessed by morphological analysis and acridine orange/propidium iodide (AO/PI) and DAPI staining. The mechanism of apoptosis induction in treated cells was investigated using molecular analysis. Overall results of morphological examination and cytotoxic assay revealed that AgSu/NPs exert a concentration‐dependent inhibitory effect on the viability of MCF‐7 cells (IC50 of ∼10 µmol/48 h). AO/PI staining confirmed the occurrence of apoptosis in cells treated with AgSu/NPs. In addition, molecular analysis demonstrated that the apoptosis in MCF‐7 cells exposed to AgSu/NPs was induced via up‐regulation of Bax and down‐regulation of Bcl‐2. These findings suggested the potential use of AgSu/NP as cytotoxic and pro‐apoptotic efficacy and its possible application in modern medicine for treating certain disorders, such as cancer.Inspec keywords: nanoparticles, silver, nanomedicine, biomedical materials, toxicology, cancer, molecular biophysics, proteins, biochemistry, cellular biophysics, nanofabricationOther keywords: Ag, Bcl‐2 down‐regulation, Bax up‐regulation, MCF‐7 cell viability, concentration‐dependent inhibitory effect, cytotoxic assay, molecular analysis, DAPI staining, acridine orange‐propidium iodide staining, morphological analysis, MTT assay, human breast cancer cells, sumac fruit aqueous extract, Anacardiaceae family, cytotoxic effects, drug delivery function, diseases, Rhus coriaria L, silver nanoparticles, antiproliferative potential, apoptotic efficacy  相似文献   

16.
In the present investigation, Rheum emodi roots extract mediated magnesium hydroxide nanoparticles [Mg(OH)2 NPs] through the bio‐inspired experimental technique were synthesised. Mg(OH)2 NPs were characterised by using various characterisation techniques such as field emission scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy. The formation of Mg(OH)2 NPs was confirmed by X‐ray diffraction. The structural analysis confirmed the hexagonal crystal symmetry of Mg(OH)2 NPs with space group P‐3m1 and space group no. 164 using the Rietveld refinement technique. TEM micrographs illustrated the nano‐size formation of Mg(OH)2 NPs of spherical shape and size ∼14.86 nm. With the aid of FTIR data, plant metabolites such as anthraquinones have been identified as a stabilising and reducing agent for the synthesis of biogenic Mg(OH)2 NPs. The synthesised Mg(OH)2 NPs showed antimicrobial and cytotoxic potential against Gram‐negative and Gram‐positive bacteria such as Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) and MDA‐MB‐231 human breast cancer cell lines.Inspec keywords: antibacterial activity, microorganisms, visible spectra, cancer, X‐ray diffraction, cellular biophysics, nanomedicine, ultraviolet spectra, nanoparticles, transmission electron microscopy, nanofabrication, field emission scanning electron microscopy, Fourier transform infrared spectra, particle size, magnesium compounds, space groups, toxicologyOther keywords: physicochemical properties, structural properties, Rheum emodi root extract mediated magnesium hydroxide nanoparticles, bio‐inspired experimental technique, field emission scanning electron microscopy, transmission electron microscopy, TEM, Fourier transform infrared spectroscopy, FTIR spectroscopy, ultraviolet‐visible spectroscopy, X‐ray diffraction, hexagonal crystal symmetry, space group P‐3m1, space group no. 164, Rietveld refinement technique, nanosize formation, plant metabolites, spherical shape, antibacterial potential, cytotoxic potential, reducing agent, anthraquinones, stabilising agent, Gram‐positive bacteria, Gram‐negative bacteria, Escherichia coli, Staphylococcus aureus, MDA‐MB‐231 human breast cancer cell lines, Mg(OH)2   相似文献   

17.
Aim: The authors report the biological synthesis of zinc oxide nanoparticles (ZnO‐NPs) from the petals extract of Rosa indica L. (rose). Its efficacy was evaluated against two dermatophytes: namely: Trichophyton mentagrophytes and Microsporum canis which cause onychomycosis. The activity of antibiotics against the tested dermatophytes was enhanced, when evaluated in combination with ZnO‐NPs. Methods and results: The synthesised ZnO‐NPs were preliminary detected by using ultraviolet UV visible spectroscopy, which showed specific absorbance. The ZnO‐NPs were further characterised by nanoparticle tracking analysis (NTA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X‐ray diffraction and Zetasizer. Moreover, nanoparticles containing nail paint (nanopaint) was formulated and its antifungal activity was also assessed against T. mentagrophytes and M. canis. ZnO‐NPs and formulated nanopaint containing ZnO‐NPs, both showed significant antifungal activity. The maximum activity was noted against M. canis and lesser against T. mentagrophytes. Minimum inhibitory concentration of ZnO‐NPs was also determined against the dermatophytes causing onychomycosis infection. Conclusion: ZnO‐NPs can be utilised as a potential antifungal agent for the treatment of onychomycosis after more experimental trials.Inspec keywords: diseases, zinc compounds, nanoparticles, nanofabrication, antibacterial activity, microorganisms, nanomedicine, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffraction, biomedical materials, patient treatmentOther keywords: zinc oxide nanoparticle biosynthesis, Rosa indica L petals extract, nail paint, antifungal activity evaluation, dermatophyte, Trichophyton mentagrophytes, Microsporum canis, antibiotics activity, ultraviolet‐visible spectroscopy, nanoparticle tracking analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray diffraction, zetasizer, antifungal agent, onychomycosis treatment  相似文献   

18.
Owing to the numerous biological applications, cost effectiveness and low cytotoxicity of the biomimetic nanoparticles (NPs), the authors optimised the production of silver NPs (AgNPs) using aqueous extract of Teucrium stocksianum Boiss. The NPs were characterised by ultraviolet‐visible (UV‐vis) spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS) and Fourier transform‐infrared spectroscopy (FTIR). The UV‐vis spectroscopy revealed a surface plasmon resonance (410‐440 nm) at an incubation temperature of 90°C when 1 mM Ag nitrate combined to 5 mg/ml extract concentration in the ratio of 1:10. DLS results show an average zeta size of ∼44.61 nm and zeta potential of −15.3 mV. SEM and XRD confirmed the high crystallinity and cubical symmetry with an average size below 100 nm. FTIR measurement shows the presence of various functional groups, responsible for the capping and reduction of Ag metal. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide cell viability assay shows that AgNPs are less cytotoxic to J774 and L929 cells as compared with enhanced anticancer activity with low IC50 concentrations (68.24 µg/ml) against Michigan Cancer Foundation‐7 (MCF‐7) cells. The ethidium bromide/acridine orange assay shows that the AgNPs kill the cell by apoptosis. Overall, the results show that AgNPs possesses potent anticancer activities.Inspec keywords: cellular biophysics, cancer, nanobiotechnology, nanomedicine, ultraviolet spectra, X‐ray diffraction, scanning electron microscopes, light scattering, patient treatmentOther keywords: anticancer assessment, in vitro cytotoxic assessment, aqueous extract‐mediated AgNPs, Teucrium stocksianum Boiss, nanoparticles, biological applications, biosynthesis, silver NPs, X‐ray diffraction, scanning electron microscopy, dynamic light scattering, Fourier transform‐infrared spectroscopy, UV‐vis spectroscopy, surface plasmon resonance, extract concentration, zeta potential, high crystallinity, FTIR measurement, amide molecules, viability assay, enhanced anticancer activity, potent anticancer activities  相似文献   

19.
Cellulose is the natural biopolymer normally used as supporting agent with enhanced applicability and properties. In present study, cellulose isolated from citrus waste is used for silver nanoparticles (Ag‐NPs) impregnation by a simple and reproducible method. The Ag‐NPs fabricated cellulose (Ag‐Cel) was characterised by powder X‐rays diffraction, Fortier transform infrared spectroscopy and scanning electron microscopy. The thermal stability was studied by thermo‐gravimetric analysis. The antibacterial activity performed by disc diffusion assay reveals good zone of inhibition against Staphylococcus aureus and Escherichia coli by Ag‐Cel as compared Ag‐NPs. The discs also displayed more than 90% reduction of S. aureus culture in broth within 150 min. The Ag‐Cel discs also demonstrated minor 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity and total reducing power ability while moderate total antioxidant potential was observed. Ag‐Cel effectively degrades methylene‐blue dye up to 63.16% under sunlight irradiation in limited exposure time of 60 min. The Ag‐NPs impregnated cellulose can be effectively used in wound dressing to prevent bacterial attack and scavenger of free radicals at wound site, and also as filters for bioremediation and wastewater purification.Inspec keywords: silver, nanoparticles, particle reinforced composites, nanocomposites, filled polymers, wounds, nanomedicine, biomedical materials, photochemistry, catalysis, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, thermal stability, thermal analysis, antibacterial activity, dyes, wastewater treatment, contaminated site remediation, nanofabricationOther keywords: silver nanoparticles, impregnated cellulose composite, wound healing, photocatalysis, natural biopolymer, citrus waste, powder X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal stability, thermo‐gravimetric analysis, antibacterial activity, disc diffusion assay, Staphylococcus aureus, Escherichia coli, inhibition zone, broth, 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity, total reducing power ability, total antioxidant potential, methylene‐blue dye, sunlight irradiation, wound dressing, bacterial attack, free radical scavenger, wastewater purification, bioremediation filters, wound site, time 60 min, Ag  相似文献   

20.
In the present study, high purity copper oxide nanoparticles (NPs) were synthesised using Tridax procumbens leaf extract. Green syntheses of nano‐mosquitocides rely on plant compounds as reducing and stabilising agents. Copper oxide NPs were characterised using X‐ray diffraction (XRD) analysis, Fourier transform infrared (FT‐IR), Field‐emission scanning electron microscopy with energy dispersive spectroscopy, Ultraviolet–visible spectrophotometry and fluorescence spectroscopy. XRD studies of the NPs indicate crystalline nature which was perfectly matching with a monoclinic structure of bulk CuO with an average crystallite size of 16 nm. Formation of copper oxide NPs was confirmed by FT‐IR studies and photoluminescence spectra with emission peaks at 331, 411 and 433 nm were assigned to a near‐band‐edge emission band of CuO in the UV, violet and blue region. Gas chromatography–mass spectrometry studies inferred the phytochemical constituents of the leaf extract. Larvicidal activity of synthesised NPs using T. procumbens leaf extract was tested against Aedes aegypti species (dengue, chikungunya, zika and yellow fever transmit vector).Inspec keywords: photoluminescence, spectrophotometry, thermal analysis, chromatography, nanoparticles, antibacterial activity, field emission electron microscopy, microorganisms, wide band gap semiconductors, scanning electron microscopy, X‐ray diffraction, copper compounds, ultraviolet spectra, nanofabrication, X‐ray chemical analysis, crystallites, visible spectra, field emission scanning electron microscopy, nanobiotechnology, semiconductor materials, semiconductor growth, fluorescence, mass spectraOther keywords: energy dispersive spectroscopy, ultraviolet–visual spectrophotometry, fluorescence spectroscopy, chikungunya, green synthesis, mosquito larvicidal activity, zika, X‐ray diffraction analysis, field‐emission scanning electron microscopy, XRD, gas chromatography–mass spectrometry, copper oxide nanoparticles, dengue, tridax procumben leaf extract, nanomosquitocides, FTIR, monoclinic structure, crystallite size, photoluminescence spectra, near‐band‐edge emission band, phytochemical constituents, Aedes aegypti species, yellow fever transmit vector, CuO  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号