首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
并联混合动力电动汽车的模糊能量管理策略   总被引:13,自引:0,他引:13  
为进一步优化并联的经济性,增强其能量管理策略的鲁棒性,针对高混合率,分析了常用的发动机最优曲线能量管理策略的不足,提出了以功率差、电池组荷电状态和电机转速为输入,以决定电机功率的比例系数为输出的模糊逻辑功率分配策略,在线计算电机所应承担的功率,达到了优化发动机工作点、电机效率和电池组荷电状态平衡的目的。通过整车循环工况前向仿真验证了该模糊策略对车辆经济性和工况适应性的改善。  相似文献   

2.
为改善军用ISG混合动力车辆的燃油经济性,并有效维持动力电池荷电状态(SOC),将惩罚函数引入传统的等效能量最小策略(EEMS),提出了基于SOC惩罚函数的EEMS优化方法。首先对逻辑规则能量管理策略进行优化,然后在模拟越野循环工况下对优化方法进行仿真验证,最后对整车发电指标进行评价。优化后,动力源之间的转矩得到了更好的协调分配,发动机运行更加平稳,经济性得到了一定改善,稳压和稳流的效果更好。  相似文献   

3.
燃料电池汽车动力系统功率平衡控制策略   总被引:1,自引:0,他引:1  
燃料电池汽车动力总成控制的主要目的是平衡各个动力总成部件如燃料电池发动机、动力蓄电池和电动机之间的功率流向和能量平衡,使车辆保持较好的动力性和经济性。依据燃料电池汽车动力系统基本拓扑结构,提出了基于DC/DC变换器电流控制方式和基于模糊决策的蓄电池恒荷电状态控制的动力系统功率平衡控制算法,在MATLAB环境中进行了离线仿真,并用快速控制原型方法进行了实车试验验证。  相似文献   

4.
基于随机动态规划的混合动力履带车辆能量管理策略   总被引:5,自引:0,他引:5  
混合动力履带车辆采用发动机—发电机组和电池组混合供电,必须设计满足车辆动力性和燃油经济性约束的能量管理策略。针对串联式混合动力履带车辆,提出一种基于随机动态规划的能量管理策略设计方法。以实车行驶试验数据为目标工况,将驾驶员功率需求抽象为随车速变化的马尔科夫过程。建立发动机—发电机组、电池组以及直流母线功率平衡动态模型。以目标工况中燃油消耗及电池最终荷电状态的偏差作为车辆的优化控制成本函数,建立车辆能量管理最优控制问题。采用策略迭代法求解以发动机转速、电池组荷电状态、车速和驾驶员功率需求为输入、发动机电子节气门为输出的最优控制策略。所得控制策略通过基于前向车辆模型的仿真以及行驶试验验证。结果表明,相对于原发动机多点控制策略,所得最优控制在满足目标工况同时,燃油经济性明显提高。  相似文献   

5.
燃料电池混合动力系统建模及能量管理算法仿真   总被引:4,自引:1,他引:3  
燃料电池混合动力系统包括燃料电池发动机、直流直流变换器(Direct current to direct current converter, DCDC)、镍氢动力电池和电动机等部件.根据台架试验数据建立燃料电池混合动力系统模型.模型考虑燃料电池性能衰减、总线电压对电动机转矩和效率的影响、DCDC效率和动态过程以及动力电池充放电内阻特性.燃料电池因长时间运行而造成的性能衰减将导致能量管理算法失效.DCDC效率在公交工况下变化不大,其动态过程可以用一阶延迟环节近似.动力电池充放电内阻影响等效氢气消耗量的计算.总线电压对电动机效率与转矩的影响可以用修正系数代替考虑.能量管理算法采用动力电池荷电状态(State of charge, SOC)稳态平衡和燃料电池动态功率补偿相结合的方法,以保持动力电池SOC水平,并在加载过程中防止燃料电池功率突变.仿真结果表明,所建立的模型能反映实际工况中的功率分配情况,动力电池SOC维持在预定区域,燃料电池功率加载速率得到限制.进一步分析表明,随着燃料电池性能衰减,通过调整稳态平衡算法,可以维持SOC水平,保证整车动力性、经济性.  相似文献   

6.
燃料电池/蓄电池混合动力电动汽车存在动力的耦合和分离过程,能量管理策略比较复杂.为了进一步合理分配燃料电池和蓄电池之间的动力输出,增强其能量管理策略的鲁棒性,从理论上分析了燃料电池/蓄电池双能源电动汽车的功率分配方法,用Matlab/Simulink建立了功率跟随模式控制策略的仿真模型,利用ADVISOR2002的并联框架完成燃料电池/蓄电池双能源混合动力汽车能量管理的建模与仿真.结果表明该电动汽车动力传动系统参数匹配合理,能满足动力性设计指标要求.  相似文献   

7.
燃料电池城市客车能量分配算法研究   总被引:7,自引:0,他引:7  
高效、清洁已使燃料电池混合动力汽车成为人们关注的焦点。燃料电池多能源的分配控制是其中的一个关键技术,其对汽车经济性、动力性及部件寿命有很大影响。分析比较了四种能量分配控制策略,即恒压浮充策略、基于母线电压的MAP图分配策略、基于电池荷电状态(State of charge,SOC)修正的分配策略和基于SOC和电动机需求功率的模糊分配控制策略,并结合国家863燃料电池城市客车项目进行了仿真分析,比较了各种能量分配控制策略的优缺点。分析结果认为基于SOC和电动机需求功率的模糊分配控制策略具有较强的鲁棒性,工况适应性好,是一种值得研究和应用的控制策略。  相似文献   

8.
针对油电并联混合动力汽车的特点,为降低油耗和排放提出了一种能量管理方案.该方案以系统动力特性为基础,结合双能源驱动控制和制动能量回收控制两方面来对能量进行管理.为有效调节和控制不同元件间的功率流,引入了模糊逻辑驱动控制策略和再生制动控制策略思想.对该能量管理策略进行实验仿真,结果表明车辆的燃油经济性和整车能量效率均有效提高,证实该能量管理策略具有合理性和可行性.  相似文献   

9.
插电式混合动力汽车兼顾传统混合动力汽车和纯电动汽车的优点,即具有较长的续驶里程又具有较好的燃油经济性,插电式混合动力汽车的实时能量管理策略是发挥节能潜力的关键技术。为解决具有手动行驶模式选择功能的P2构型插电式混合动力汽车的能量管理实时优化问题,定义发动机和电机功率分配因子,在任何SOC下从电量消耗模式切换到电量维持模式时,提出通过功率分配因子动态调整发动机最优工作曲线获得最佳的燃油经济性的实时能量管理策略。建立功率分配因子全局优化模型,利用自适应模拟退火算法离线优化功率分配因子,研究功率分配因子和SOC对整车燃油经济性的影响规律,得到在不同SOC的最优功率分配因子控制线。从而建立基于最优功率分配因子控制线的插电式混合动力汽车实时控制能量管理策略。在多个循环工况下对比仿真分析不同SOC下的燃油经济性,结果表明基于最优功率分配因子的能量管理策略使得燃油经济性改善幅度最大可达16.99%。  相似文献   

10.
研究了联网场景下面向连续多路口的混合动力车辆节能速度规划问题,探讨了使用双层伪谱法优化城市交通中混合动力车辆能量管理策略的可行性。根据交通信号灯的时序信息,以保证车辆中途不停车顺利通过各路口为目标,使用伪普法规划最佳的车速轨迹。根据规划的车速,以车辆能耗最低为目标,实现发动机和动力电池间功率输出的经济性分配。仿真结果表明,与人工驾驶相比,所提方法可将燃油消耗量减少6.9%,实车试验结果进一步验证了所提策略的有效性。  相似文献   

11.
基于无级变速器的并联式混合动力汽车能量管理策略   总被引:1,自引:0,他引:1  
针对一种采用金属带式无级变速器(CVT)的并联式混合动力汽车(PHEV),以发动机稳态效率图和电池的充放电内阻曲线为依据,提出基于逻辑门限方法的PHEV能量管理策略,实现混合动力系统不同工作模式间的动态切换。并通过确定不同工作模式中混合动力系统的最佳工作曲线,合理控制发动机和电动机的转矩分配以及CVT的速比。基于ADVISOR仿真平台的仿真研究表明,所提出的能量管理策略能够在满足车辆动力性能指标的前提下有效地降低混合动力汽车的燃油消耗,并能将电池组电池荷电状态(SOC)维持在合理的范围内。  相似文献   

12.
为了解决氢燃料电池客车动力性不足,燃料消耗过高和氢燃料电池工作效率过低等问题。首先在AVL-Cruise和MATLABSimulink软件搭建氢燃料电池客车整车模型和能量管理控制策略。其次根据CCBC和CHTC-B行驶工况确定整车功率需求,匹配氢燃料电池复合电源并且满足整车动力性要求。然后提出一种高效率功率跟随能量管理策略,根据超级电容当前SOC、整车需求功率等条件来判断氢燃料电池开关状态和限制氢燃料电池输出功率以提高工作效率。将设计高效率功率跟随控制策略在CCBC和CHTC-B行驶工况下对整车经济性和动力性进行仿真。仿真结果表明:在高效率功率跟随能量管理控制策略条件下,氢燃料电池客车在CCBC和CHTC-B工况下氢气消耗量和高效工作区间占比分别为24.45 kg/100 km、54.86%和21.97 kg/100 km、55.46%,最终解决了氢燃料电池工作效率过低的问题。  相似文献   

13.
燃料电池混合动力客车整车控制策略   总被引:4,自引:2,他引:2  
汽车能耗和排放污染问题近年来已引起广泛关注,以氢气为燃料的燃料电池汽车是实现近零排放的可行途径.在燃料电池混合动力客车中,整车经济性和燃料电池发动机的耐久性及可靠性在很大程度上取决于整车能量管理策略的优劣.对能量混合型燃料电池城市客车基于电压控制的能量管理策略和基于电流控制的能量管理策略进行讨论,由于蓄电池输出电流对总线电压的变化敏感,使得基于电压控制的能量管理策略在实际中应用效果并不理想,而基于电流控制的能量管理策略更适合能量混合型燃料电池城市客车.基于电流控制的能量管理策略包括能量分配和动态滤波两个部分,这种策略构成能够保证燃料电池发动机平稳运行和蓄电池组的合理使用.道路试验结果表明,基于电流控制的能量管理策略很大程度改善了整车经济性和可靠性.  相似文献   

14.
以由燃料电池、超级电容和蓄电池组成的混合动力船舶为研究对象,根据各动力源的特性参数建立混合动力系统数学模型。根据燃料电池、蓄电池和超级电容的动力特性,提出了一种基于模糊逻辑的能量管理策略,借助模糊逻辑控制算法和隶属度函数概念,综合考虑各影响因素(如功率需求,SOC等),从而得到最佳优化方案。通过模糊控制器将蓄电池SOC、超级电容SOC、需求功率输入量模糊化,经过所设定的控制规则来完成能量分配与管理,得到燃料电池、蓄电池和超级电容的输出功率。最后在MATLAB/SIMULINK环境下建立了混合动力系统仿真模型,仿真结果表明:基于模糊逻辑的能量管理策略能实现对混合动力系统能量的优化管理与控制,使船舶安全可靠运行,为实现船舶纯绿色的发展提供技术支撑。  相似文献   

15.
混合动力汽车的出现在一定程度上缓解了能源危机和环境问题。控制策略作为混合动力汽车的核心技术,对动力性和燃油经济性的实现起到至关重要的作用。主要研究模糊逻辑控制策略的制定及基于 Advisor 的仿真。提出了将总需求转矩和电池荷电状态划分为更多模糊子集以得到更细的模糊规则的方法。通过比较仿真结果验证了细分的模糊逻辑控制策略对提高动力性和燃油经济性的积极作用。  相似文献   

16.
针对并联混合动力汽车的能量管理问题,提出了一种新的启发式控制策略,即负载跟随阈值改变策略(LTS)。LTS控制策略基于阈值变化机制和负载跟随方法,可以与电池荷电状态(SOC)保持成比例的微小偏差,能够有效确保电池持续稳定运行。与目前应用阈值变化机制的规则控制策略不同,本文设计LTS控制策略的阈值通过电池荷电状态(SOC)和发动机转速来综合调整动力输出方式,其能量管理的精细化程度更高。为了验证策略的有效性,将该策略应用于混合动力汽车进行仿真测试,并与传统的等效燃油消耗率最小化策略(ECMS)和电动辅助控制策略(EACS)进行性能对比。结果表明:在燃油经济性方面,LTS控制策略优于EACS控制策略3.1%~10.4%,LTS控制策略优于ECMS控制策略2.5%~5.7%。在电池荷电状态(SOC)方面,LTS控制策略可以使得CSO值大于60%,电池具有较好的运行状态。  相似文献   

17.
针对燃料电池混合动力汽车(Fuel Cell Hybrid electric Vehicle,FCHV)在频繁变载、启停、连续低载和怠速工况下燃料电池寿命衰减的现状,提出基于模糊控制与开关控制的滑动平均滤波复合能量管理策略,该复合能量管理策略以整车需求功率与燃料电池高效区下限之差和蓄电池SOC为模糊输入量,在有效避免燃料电池启停、连续低载和怠速工况的同时,通过开关控制可避免蓄电池过充产生的安全问题,通过滑动平均滤波控制可以改善燃料电池在频繁变载工况下耐久性差的问题。采用AVL Cruise软件和Matlab/Simulink软件进行联合仿真,仿真结果表明,提出的复合能量管理策略在保证蓄电池安全性的情况下,减少了引起燃料电池寿命衰减的工况,提升了燃料电池的耐久性。  相似文献   

18.
以一款混联插电式混合动力汽车(Plug-in hybrid electric vehicle, PHEV)的燃油经济性为研究目标,为改善以等效因子为核心的等效燃油瞬时消耗最小策略(Equivalent fuel consumption minimization strategy, ECMS)的控制效果,考虑电池荷电状态(State of charge, SOC)、等效因子与燃油消耗的关系,构建等效因子全局优化模型;利用遗传算法离线优化一定工况下的等效因子S,得到不同电消耗续航行驶里程与电池SOC初始值的最佳等效因子MAP图,建立基于等效因子优化的ECMS能量管理策略,并考虑动力电池、电动机等部件的效率,获得最佳等效因子下的发动机、ISG电机、驱动电机的功率分配,并进 行仿真与硬件在环试验,其中仿真结果表明,与未优化的等效因子相比,燃油经济性提高20.81%,硬件在环试验结果与 仿真结果基本一致,表明所制定能量管理策略的有效性和可行性,进而为解决不同的行驶里程PHEV功率分配策略提供理论基础。  相似文献   

19.
针对燃料电池公交车频繁地大范围改变工况导致燃料电池系统经济性较差和耐久性明显降低的问题,在常规的功率跟随策略的基础上,提出一种基于多级滤波的燃料电池公交车功率跟随策略。在该策略中,首先对动力电池SOC偏离系数进行非线性处理,并使用经过非线性处理的动力电池SOC偏离系数确定动力电池实时充电功率;然后对原始的整车需求功率进行两级滤波处理,包括固定周期积分中值处理和卡尔曼滤波处理,得到滤波后的整车需求功率,动力电池实时充电功率和滤波后的整车需求功率之和即为原始的燃料电池系统需求功率;最后利用梯度滞环法对原始的燃料电池系统需求功率进行三级滤波处理,得到最终的燃料电池系统需求功率,使燃料电池系统能稳定地运行在高效工作区间内。建立燃料电池公交车模型分析,仿真结果表明,在CHTC-B和CCBC工况下,与常规的功率跟随策略相比,所提出的基于多级滤波的燃料电池公交车功率跟随策略使燃料电池系统的经济性有所改善,并使燃料电池系统输出功率平稳,其波动率降低97%,从而显著提高了燃料电池系统的耐久性。  相似文献   

20.
本文对燃料电池公交车主要动力系统部件进行了参数匹配,利用Matlab/Simulink软件搭建了整车仿真模型,建立了功率跟随控制、模糊逻辑控制方法,通过仿真对比分析了两种控制策略下车辆的整车性能。结果表明,在模糊逻辑控制策略下燃料电池更多处于最佳功率输出区间内,启动频率降低;整车百公里氢耗较功率跟随控制下降4.7%,提升了整车经济性,为燃料电池公交车控制策略开发提供了理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号