首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The therapeutics for type 2 diabetes mellitus has emerged in the current century towards nanomedicine incorporated with plant active compounds. In this study, Tinospora cordifolia loaded poly (D, L‐lactide) (PLA) nanoparticles (NPs) were evaluated in vivo for their anti‐hyperglycemic potency towards streptozotocin‐induced type 2 diabetic rats. T. cordifolia loaded PLA NPs were synthesised by the double solvent evaporation method using PLA polymer. The NPs were then characterised and administrated orally for 28 successive days to streptozotocin‐induced diabetic rats. The PLA NPs had significant anti‐diabetic effects which were equal to the existing anti‐diabetic drug glibenclamide. The antidiabetic activity is due to the synergism of compounds present in stem extract of the plant which reduced the side effects and anti‐diabetic.Inspec keywords: blood, nanofabrication, drug delivery systems, biochemistry, evaporation, nanoparticles, nanomedicine, drugs, diseases, polymers, biomedical materialsOther keywords: PLA nanoparticles, antidiabetic effects, nanoencapsulated Tinospora cordifolia, streptozotocin‐induced type 2 diabetic rats, type 2 diabetes mellitus, poly(d, l‐lactide) nanoparticles, diabetic drug glibenclamide, nanomedicine, antihyperglycemic potency, double‐solvent evaporation  相似文献   

2.
This study examines the effect of nanoparticles with zinc oxides (ZnONPs) on diabetic nephropathy, which is the primary cause of mortality for diabetic patients with end‐stage renal disease. Diabetes in adult male rats was induced via intraperitoneal injection of streptozotocin. ZnONPs were intraperitoneally administered to diabetic rats daily for 7 weeks. Diabetes was associated with increases in blood glucose level, 24‐h urinary albumin excretion rate, glomerular basement membrane thickness, renal oxidative stress markers, and renal mRNA or protein expression of transforming growth factor‐β1, fibronectin, collagen‐IV, tumour necrosis factor‐α and vascular endothelial growth factor‐A. Moreover, the expression of nephrin and podocin, and the mRNA expression of matrix metalloproteinase‐9 were decreased in the diabetic group. These changes were not detected in the control group and were significantly prevented by ZnONP treatment. These results provide evidence that ZnONPs ameliorate the renal damage induced in a diabetic rat model of nephropathy through improving renal functionality; inhibiting renal fibrosis, oxidative stress, inflammation and abnormal angiogenesis; and delaying the development of podocyte injury. The present findings may help design the clinical application of ZnONPs for protection against the development of diabetic nephropathy.  相似文献   

3.
This study evaluated the biochemical, molecular, and histopathological mechanisms involved in the hypoglycaemic effect of zinc oxide nanoparticles (ZnONPs) in experimental diabetic rats. ZnONPs were prepared by the sol–gel method and characterised by scanning and transmission electron microscopy (SEM and TEM). To explore the possible hypoglycaemic and antioxidant effect of ZnONPs, rats were grouped as follows: control group, ZnONPs treated group, diabetic group, and diabetic + ZnONPs group. Upon treatment with ZnONPs, a significant alteration in the activities of superoxide dismutase, glutathione peroxidase, and the levels of insulin, haemoglobin A1c, and the expression of cluster of differentiation 4+ (CD4+), CD8+ T cells, glucose transporter type‐4 (GLUT‐4), tumour necrosis factor, and interleukin‐6 when compared to diabetic and their control rats. ZnONPs administration to the diabetic group showed eminent blood glucose control and restoration of the biochemical profile. This raises their active role in controlling pancreas functions to improve glycaemic status as well as the inflammatory responses. Histopathological investigations showed the non‐toxic and therapeutic effect of ZnONPs on the pancreas. TEM of pancreatic tissues displayed restoration of islets of Langerhans and increased insulin‐secreting granules. This shows the therapeutic application of ZnONPs as a safe anti‐diabetic agent and to have a potential for the control of diabetes.Inspec keywords: nanoparticles, transmission electron microscopy, cellular biophysics, sugar, nanomedicine, nanofabrication, zinc compounds, molecular biophysics, biochemistry, tumours, enzymes, biomedical materials, biological organs, blood, diseases, patient treatment, II‐VI semiconductors, wide band gap semiconductors, scanning electron microscopy, sol‐gel processing, semiconductor growthOther keywords: molecular mechanisms, histopathological mechanisms, zinc oxide nanoparticles, experimental diabetic rats, hypoglycaemic effect, antioxidant effect, control group, diabetic group, CD4+, CD8+ T cells, glucose transporter type‐4, control rats, GLUT‐4 expression, streptozotocin‐induced diabetic rats, biochemical mechanisms, safe antidiabetic agent, inflammation response, sol‐gel method, transmission electron microscopy, scanning electron microscopy, SEM, TEM, superoxide dismutase, glutathione peroxidase, insulin levels, haemoglobin A1c, differentiation 4+ T cells, tumour necrosis factor, interleukin‐6, blood glucose control, pancreas functions, glycaemic status, therapeutic effect, pancreatic tissues, Langerhans islets, insulin‐secreting granules, ZnO  相似文献   

4.
A large population is suffering from multifactorial urolithiasis worldwide with a reoccurrence rate of almost 70%–80% in males and 47%–60% in females. In the present study, the nephroprotective effect of silver nanoparticles (AgNPs) synthesised by Bryophyllum pinnatum was evaluated in ethylene glycol‐induced urolithiasis in rat. B. pinnatum‐mediated AgNPs which were found to be spherical and polydispersed particles with an average size of 32.65 nm determined by transmission electron microscopy analysis, and showing an absorption peak at 432 nm by the UV‐Vis spectrophotometric analysis, revealing the role of hydroxyl group in the synthesis by Fourier Transformed Infrared Spectroscopy analysis, with a zeta potential value of −15.7 mV. The crystalline nature and fcc structure was demonstrated based on X‐ray diffraction analysis. Animal study was performed on 36 male Wistar rats divided into six equal groups, which demonstrated significant increase in serum total protein, albumin and globulin and significant decrease in AST, ALT, creatinine, BUN, calcium and phosphorus in group V and VI when compared with group II and IV. No crystalluria was observed in rats given B. pinnatum AgNPs. Histopathological observations in group V and VI showed mild degenerative changes and restoration or maintenance of kidney parenchyma when compared with group II and IV rats. Thus, the authors conclude with the beneficial preventive and therapeutic nephroprotective effect of B. pinnatum‐mediated AgNPs against ethylene glycol‐induced urolithiasis in rats.  相似文献   

5.
Intelligent inorganic nanoparticles were designed and produced for use in imaging and annihilating tumour cells by radio‐frequency (RF) hyperthermia. Nanoparticles synthesised to provide RF hyperthermia must have magnetite properties. For this purpose, magnetite nanoparticles were first synthesised by the coprecipitation method (10–15 NM). These superparamagnetic nanoparticles were then covered with gold ions without losing their magnetic properties. In this step, gold ions are reduced around the magnetite nanoparticles. Surface modification of the gold‐coated magnetic nanoparticles was performed in the next step. A self‐assembled monolayer was created using cysteamine (2‐aminoethanethiol) molecules, which have two different end groups (SH and NH2). These molecules react with the gold surface by SH groups. The NH2 groups give a positive charge to the nanoparticles. After that, a monoclonal antibody (Monoclonal Anti‐N‐CAM Clone NCAM‐OB11) was immobilised by the 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide/N‐hydroxysuccinimide method. Then, the antenna RF system (144.00015 MHz) was created for RF hyperthermia. The antibody‐nanoparticle binding rate and cytotoxicity tests were followed by in vitro and in vivo experiments. As the main result, antibody‐bound gold‐coated magnetic nanoparticles were successfully connected to tumour cells. After RF hyperthermia, the tumour size decreased owing to apoptosis and necrosis of tumour cells.  相似文献   

6.
Acute lymphoblastic leukemia (ALL) is the white blood cell cancer in children. L‐asparaginase (L‐ASNase) is one of the first drugs used in ALL treatment. Anti‐tumor activity of L‐ASNase is not specific and indicates limited stability in different biological environments, in addition to its quick clearance from blood. The purpose of the present study was to achieve a new L‐ASNase polymer bioconjugate to improve pharmacokinetic, increase half‐life and stability of the enzyme. The conjugations were achieved by the cross‐linking agent of 1‐ethyl‐3‐(3‐ dimethylaminopropyl) carbodiimide (EDC) which activates the carboxylic acid groups of polymeric nanoparticles to create amide bond. EDC conjugated the L‐ASNase to two biodegradable polymers including; Ecoflex® and poly (styrene‐co‐maleic acid) (PSMA) nanoparticles. To achieve optimal L‐ASNase nanoparticles the amounts of each polymer and the crosslinker were optimized and the nanoparticles were characterized according to their particle size, zeta potential and percent of conjugation of the enzyme. The results showed that conjugated enzyme had more stability against pH changes and proteolysis. It had lower Km value (indicating more affinity to the substrate) and greater half‐life in plasma and phosphate buffered saline, in comparison to native enzyme. Generally, the conjugated enzyme to PSMA nanoparticles showed greater results than Ecoflex® nanoparticles.Inspec keywords: enzymes, polymer blends, nanomedicine, biomedical materials, blood, nanoparticles, cancer, molecular biophysics, molecular configurations, biochemistry, conducting polymers, electrokinetic effects, particle size, bonds (chemical), biodegradable materials, pHOther keywords: enhanced stability, L‐asparaginase, bioconjugation, poly(styrene‐co‐maleic acid), Ecoflex nanoparticles, acute lymphoblastic leukaemia, white blood cell cancer, children, drugs, ALL treatment, antitumour activity, biological environments, L‐ASNase polymer bioconjugate, pharmacokinetic, enzyme, crosslinking agent, amide bond, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide, carboxylic acid groups, polymeric nanoparticles, EDC conjugation, biodegradable polymers, PSMA nanoparticles, optimal L‐ASNase nanoparticles, particle size, zeta potential, pH changes, proteolysis, native enzyme, conjugated enzyme  相似文献   

7.
Cisplatin treatment results in acute kidney injury (AKI) by the phosphorylation of mixed lineage kinase domain‐like protein (MLKL). The knockout of MLKL, which is a principle mediator of necroptosis, is believed to alleviate the AKI symptoms. The present study was aimed to improve the therapeutic efficacy in AKI. For this purpose, miR‐500a‐3P was identified as appropriate miRNA therapeutics and loaded in liposome delivery carrier. The authors have showed that the miR‐LIP directly controls the expression of RIPK3 and MLKL – a modulator of necroptosis and thereby reduces the severity of kidney injury. The miR‐LIP significantly controlled the phosphorylation of MLKL compared to that of CDDP‐treated HK2 cells. Similar results are observed with RIPK3. The miR‐LIP has also been demonstrated to control the inflammatory response in tubular cells. Western blot analysis further revealed that the phosphorylation of P‐65 was mainly responsible for the inflammatory response and miR‐LIP significantly decreased the CDDP‐induced NF‐kB phosphorylation. Overall, the present study explored the molecular mechanism behind the necroptosis in AKI and potential of miRNA in targeting MLKL pathways. Study further highlights the potential advantage of liposome as a delivery carrier for miRNA therapeutics.Inspec keywords: medical disorders, biochemistry, cancer, cellular biophysics, kidney, enzymes, drugs, toxicology, patient treatment, injuries, genetics, molecular biophysicsOther keywords: current 500.0 A, functional role, microRNA‐500a‐3P‐loaded liposomes, cisplatin‐induced AKI, cisplatin treatment results, acute kidney injury, phosphorylation, mixed lineage kinase domain, necroptosis, AKI symptoms, therapeutic efficacy, appropriate miRNA therapeutics, liposome delivery carrier, miR‐LIP, RIPK3, inflammatory response, CDDP‐induced NF‐kB, MLKL pathways  相似文献   

8.
The present study focuses on the biosynthesis of gold nanoparticles (AuNPs) using Streptomyces coelicoflavus (S. coelicoflavus) SRBVIT13 isolated from marine salt pan soils collected from Ongole, Andhra Pradesh, India. The biosynthesised AuNPs are characterised by UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy and energy‐dispersive X‐ray analysis. Transmission electron microscopy study suggests that the biosynthesised AuNPs are spherical in shape within a size range of 12–20 nm (mean diameter as 14 nm). The anti‐type II diabetes activity of AuNPs is carried out by testing it in vitro α ‐glucosidase and α ‐amylase enzyme inhibition activity and in vivo postprandial anti‐hyperglycemic activity in sucrose and glucose‐loaded streptozotocin induced diabetic albino Wister rats. AuNPs has shown a significant inhibitory activity of 84.70 and 87.82% with IC50 values of 67.65 and 65.59 μg/mL to α ‐glucosidase and α ‐amylase enzymes, while the diabetic rats have shown significant reduction in the post postprandial blood glucose level by 57.80 and 88.09%, respectively compared with control group after AuNPs treatment at the concentration of 300 and 600 mg/kg body weight. Hence, this biosynthesised AuNPs might be useful in combating type II diabetes mellitus for the betterment of human life.Inspec keywords: gold, nanoparticles, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, diseases, enzymes, nanomedicine, biochemistry, spectrochemical analysisOther keywords: gold nanoparticles, Streptomyces coelicoflavus SRBVIT13, biosynthesis, UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, energy‐dispersive X‐ray analysis, antitype II diabetes activity, in vitro enzyme inhibition activity, in vivo postprandial antihyperglycemic activity, streptozotocin induced diabetic albino Wister rats, type II diabetes mellitus, Au  相似文献   

9.
This study investigated synthesis and characterisation of Nano‐PLGA (poly(lactic‐co‐glycolic acid))/CO (clove‐oil) nanoparticles. The delivery of drug‐loaded nanoparticles to demineralised dentin substrates and their morphological association with a two‐step etch‐and‐rinse adhesive system was studied. The effect of Nano‐PLGA/CO pretreatment on micro‐tensile bond strength of resin‐dentin bonding was scrutinised. This study employed CO‐containing PLGA nanoparticles as a delivery vehicle for sustainable drug release inside dentinal‐tubules for potential dental applications. Emulsion evaporation resulted in uniformly distributed negatively‐charged Nano‐PLGA/Blank and Nano‐PLGA/CO nanoparticles. Scanning electron microscopy/ transmission electron microscopy revealed even spherical nanoparticles with smooth texture. High CO‐loading and encapsulation were achieved. Moreover, controlled CO‐release was evidenced after 15 days, in‐vitro and ex‐vivo. Nanoparticles exhibited low initial toxicity towards human mesenchymal stem cells with excellent antibacterial properties. Nanoparticles penetration inside dentinal‐tubules indicated a close correlation with resin‐tags. Nano‐PLGA/CO pretreatment indicated reduction in short‐term bond strength of resin‐dentin specimens. Nano‐PLGA/CO as model drug‐loaded nanoparticles showed excellent metric and antibacterial properties, low toxicity and sustained CO release. However, the loading of nanoparticles with CO up to ∼10 mg (Nano‐PLGA/CO:10) did not adversely affect short‐term bond strength values. This drug‐delivery strategy could be further expanded to deliver other pulp‐sedative agents and medications with other dental relevance.Inspec keywords: nanoparticles, dentistry, encapsulation, filled polymers, nanofabrication, nanocomposites, nanomedicine, biomedical materials, drug delivery systems, adhesives, tensile strength, biomechanics, resins, proteins, molecular biophysics, biochemistry, emulsions, evaporation, scanning electron microscopy, transmission electron microscopy, texture, cellular biophysics, antibacterial activity, bonds (chemical)Other keywords: poly(lactic‐co‐glycolic acid) encapsulated clove oil nanoparticles, dental applications, drug‐loaded nanoparticle delivery, demineralised dentin substrates, morphological association, two‐step etch‐and‐rinse adhesive system, simulated pulpal pressure, nanoPLGA‐CO pretreatment, microtensile bond strength, resin‐dentin bonded specimens, CO‐containing PLGA nanoparticles, delivery vehicle, sustainable drug release, dentinal‐tubules, potential dental applications, emulsion evaporation, uniformly‐distributed negatively‐charged nanoPLGA‐blank, scanning electron microscopy‐transmission electron microscopy, spherical nanoparticles, smooth texture, high CO‐loading, controlled CO‐release, human mesenchymal stem cells, antibacterial properties, antibiofilm properties, deep nanoparticle penetration, resin‐tags, short‐term bond strength, resin‐dentin specimens, metric properties, antibacterial properties, sustained CO release, pulp‐sedative agents, time 15 d  相似文献   

10.
Lycopene (LYC) is known to protect cells from oxidative damage caused by free radicals in human tissues. In the present study, the authors designed a LYC‐loaded sialic acid (SA)‐conjugated poly(D,L‐lactide‐co‐glycolide) (PLGA) nanoparticle (LYC‐NP) to enhance the therapeutic efficacy of LYC in acute kidney injury. The characteristics of the LYC‐NPs were defined according to particle size, morphology, and in vitro drug release. The LYC‐NPs exhibited a controlled release of LYC over 48 h. Confocal laser scanning microscopy clearly highlighted the targeting potential of SA. Enhanced green fluorescence was observed for the LYC‐NPs in H2 O2 ‐treated human umbilical vein endothelial cells, indicating enhanced internalisation of NPs. The LYC‐NPs showed significantly greater cell viability than H2 O2 ‐treated cells. In addition, the LYC‐NPs remarkably reduced proinflammatory cytokine levels, attributable mainly to the increased cellular internalisation of the SA‐based carrier delivery system. Furthermore, protein levels of caspase‐3 and ‐9 were significantly down‐regulated after treatment with the LYC‐NPs. Overall, they have demonstrated that SA‐conjugated PLGA‐NPs containing LYC could be used to treat kidney injury.Inspec keywords: fluorescence, biomedical materials, biological tissues, cellular biophysics, drugs, proteins, molecular biophysics, injuries, drug delivery systems, kidney, nanomedicine, biochemistry, optical microscopy, nanoparticles, nanofabrication, cancer, toxicology, blood vessels, particle sizeOther keywords: sialic acid‐conjugated PLGA nanoparticles, chemotherapeutic drug‐induced kidney injury, LYC‐NP, LYC‐loaded sialic acid‐conjugated poly(D,L‐lactide‐co‐glycolide) nanoparticle, SA‐conjugated PLGA‐NP, protective effect, lycopene, human tissues, particle size, in vitro drug release, confocal laser scanning microscopy, green fluorescence, human umbilical vein endothelial cells, cell viability, proinflammatory cytokine levels, cellular internalisation, SA‐based carrier delivery system, time 48.0 hour  相似文献   

11.
L‐theanine is present in tea as a unique, free, non‐protein amino acid. Due to various beneficial effects on brain activity, it is widely used as a nutraceutical. After consumption, it is rapidly absorbed and metabolised followed by excretion through urine. Therefore, the authors developed an L‐theanine delivery system by encapsulating into polymeric nanoparticles to release it slowly and make it available for a longer period of time. Poly(D, L‐lactic acid) nanoparticle (PLANP) was fabricated by the double emulsion method and L‐theanine was encapsulated into it (PLANP‐T). Spherical nanoparticles with a hydrodynamic diameter of 247 and 278 nm and surface charge of −14.5 and −25.7 mV for PLANP and PLANP‐T, respectively, were fabricated. The Fourier transform infrared spectroscopic data indicated encapsulation of L‐theanine into PLANP. The PLANP showed high L‐theanine encapsulation capacity (71.65%) with a sustained release character. The maximum release (66.3%) of L‐theanine was recorded in pH 7.3 at 48 h. The release kinetics followed the Higuchi model and the release mechanism was determined as super case‐II transport (erosion). This slow release will make it available to the target tissue for a longer period of time (sustain release effect) and will also avoid immediate metabolism and clearance from the circulation.Inspec keywords: nanomedicine, pH, polymers, nanofabrication, emulsions, biomedical materials, drug delivery systems, nanoparticles, Fourier transform infrared spectraOther keywords: brain activity, L‐theanine delivery system, polymeric nanoparticles, double emulsion method, spherical nanoparticles, surface charge, L‐theanine encapsulation capacity, poly(D, L‐lactic acid) nanoparticles, nonprotein amino acid, urine, hydrodynamic diameter, Fourier transform infrared spectroscopy, time 48.0 hour, voltage ‐25.7 mV, voltage ‐14.5 mV, size 278.0 nm, size 247.0 nm, target tissue, Higuchi model, pH  相似文献   

12.
Mastitis is an important economic disease causing production losses in dairy industry. Antibiotics are becoming ineffective in controlling mastitis due to the emergence of resistant strains requiring the development of novel therapeutic agents. In this study, the authors present the phytochemical synthesis of silver nanoparticles (AgNPs) with acetyl‐11‐α‐keto‐β‐boswellic acid and evaluation of their activity in Staphylococcus aureus induced murine mastitis. Boswellic acid mediated AgNP (BANS) were oval, polydispersed (99.8 nm) with an minimum inhibitory concentration of 0.033 µg ml−1 against S. aureus, inhibitory concentration (IC50) of 30.04 µg ml−1 on mouse splenocytes and safe at an in vivo acute oral dose of 3.5 mg kg−1 in mice. Mastitis was induced in lactating mice by inoculating S. aureus (log10 5.60 cfu) and treated 6 h post‐inoculation with BANS (0.12 mg kg−1, intramammary and intraperitoneal), and cefepime (1 mg kg−1, intraperitoneal). S. aureus inoculated mice showed increased bacterial load, neutrophil infiltration in mammary glands and elevated C‐reactive protein (CRP) in serum. Oxidative stress was also observed with elevated malondialdehyde level, superoxide dismutase (SOD) and catalase (CAT) activities. BANS treatment significantly (P  < 0.05) reduced bacterial load, CRP, SOD, CAT activities and neutrophil infiltration in affected mammary glands. BANS could be a potential therapeutic agent for managing bovine mastitis.Inspec keywords: nanomedicine, nanoparticles, silver, antibacterial activity, drugs, diseases, enzymesOther keywords: antibacterial effects, antiinflammatory effects, antioxidant effects, acetyl‐11‐α‐keto‐β‐boswellic acid, mediated silver nanoparticles, experimental murine mastitis, economic disease, dairy industry, resistant strains, phytochemical synthesis, Staphylococcus aureus, minimum inhibitory concentration, inoculating S. aureus, neutrophil infiltration, mammary glands, elevated C‐reactive protein, superoxide dismutase, catalase, bovine mastitis, Ag  相似文献   

13.
The study aims to document the effect of starch‐stabilised copper‐based nanoparticles (CuNPs) on the biosynthesis of pharmaceutically valuable secondary metabolites, especially saponins, of the reputed nootropic herb Bacopa monnieri (L.) Pennell. CuNPs were synthesised chemically by the reduction of cupric sulphate pentahydrate with ascorbic acid using starch as the capping agent. They were characterised by UV–visible spectrophotometry, Fourier‐transform infra‐red spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy and zeta potential. The nanoparticles consisted of cuprous oxide and metallic copper, were approximately spherical, polydispersed with diameter <20 nm. Hydroponically grown B. monnieri plants were treated in vivo with the CuNPs between the concentrations of 0–100 mg l−1. Spectrophotometric estimation of the total contents of saponins, alkaloids, phenolics, flavonoids and DPPH radical scavenging capacity from the methanolic extracts of the whole plants showed a hormetic increase in the content of secondary metabolites in a concentration‐dependent manner from 5 mg l−1 until it declined at toxic metabolic concentration. This was accompanied by an increase in ROS markers hydrogen peroxide and malondialdehyde as well as a hormetic effect on activities of phenylalanine ammonia lyase and antioxidant enzymes catalase, ascorbate peroxidase and superoxide dismutase. CuNPs at sub‐toxic concentrations were found to enhance secondary metabolism and antioxidant capacity in Bacopa monnieri through ROS‐mediated defence response.Inspec keywords: organic compounds, pharmaceuticals, copper compounds, visible spectra, nanofabrication, hydrogen compounds, transmission electron microscopy, reduction (chemical), ultraviolet spectra, electrokinetic effects, X‐ray diffraction, nanoparticles, toxicology, copper, enzymes, Fourier transform infrared spectra, health and safety, agricultural productsOther keywords: starch‐stabilised copper‐based nanoparticles, secondary metabolites, cupric sulphate pentahydrate, capping agent, UV–visible spectrophotometry, X‐ray diffraction, high‐resolution transmission electron microscopy, DPPH radical scavenging capacity, toxic metabolic concentration, antioxidant capacity, saponin content, chemical reduction, ascorbic acid, Fourier transform infrared spectroscopy, zeta potential, hydroponical growth, methanolic extracts, alkaloid content, flavonoid content, malondialdehyde, phenylalanine ammonia lyase, antioxidant enzymes catalase, ascorbate peroxidase, superoxide dismutase, sub‐toxic concentration, spectrophotometric estimation, phenolic content, Pennell plants, Bacopa monnieri L, in vivo treatment, ROS‐mediated defence response, Cu, Cu2 O, H2 O2 , CuSO4 H2 O  相似文献   

14.
Silver nanoparticles (AgNPs) were synthesised from aqueous Ag nitrate through a simple, competent and eco‐friendly method using the leaf extract of Ipomoea eriocarpa as reducing as well as capping agent. Ultraviolet–visible absorption spectroscopy was used to confirm the formation of AgNPs which displayed the substantiation of surface plasmon bands at 425 nm. The NPs were also characterised using Fourier transformer infrared spectroscopy, X‐ray diffraction method, transmission electron microscope and zeta potential. The characterisation study confirmed the formation of AgNPs, their spherical shape and average diameter of 12.85 ± 8.65 nm. Zeta potential value of −20.5 mV suggested that the AgNPs are stable in the suspension. The aqueous extract and the AgNPs were further screened for in vivo anti‐inflammatory activity using carrageenan‐induced paw edema in male Wistar rats. The study demonstrated that the AgNPs (1 ml kg−1) had a significant (p  < 0.05) anti‐edemic effect and inhibition was observed from the first hour (21.31 ± 1.34) until the sixth hour (52.67 ± 1.41), when the inhibitory effect was greatest and superior to the aqueous extract and the standard, diclofenac.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, absorption coefficients, surface plasmons, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, suspensions, drugs, nanomedicineOther keywords: biosynthesis, aqueous leaf extract, ipomoea eriocarpa, antiinflammatory effect, carrageenan‐induced paw edema, male Wistar rats, silver nanoparticles, aqueous nitrate, capping agent, ultraviolet‐visible absorption spectroscopy, surface plasmon band, Fourier transformer infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, zeta potential, spherical shape, suspension, aqueous extract, in vivo antiinflammatory activity, antiedemic effect, inhibitory effect, diclofenac, wavelength 425 nm, size 12.85 nm to 8.65 nm, Ag  相似文献   

15.
Medicinal plants are widely utilised by the African population since they have no harmful side effects and low cost compared with different treatments. The field of nanotechnology is the most active part of research in modern material''s science. Though there are several chemicals as well as physical methods, however, green synthesis of nanomaterials is the most emerging method of synthesis. Conventionally, chemical reduction is the most often applied approach for the preparation of metallic nanoparticle''s however, in most of the synthesis protocols it cannot avoid the utilisation of toxic chemicals. Hence, the authors report an environmentally friendly, cost effective and green approach for synthesis of 1 mM AgNO3 solution using the polyphenolic‐rich leaf extracts of Syzygium cumini (S. cumini) (L.) Skeels as a reducing and capping agent. The synthesised AgNPs are characterised by UV‐Vis spectroscopy and Fourier transform infrared (FTIR) spectroscopy. FTIR analysis revealed that the AgNPs were stable due to eugenols, terpenes, and other different aromatic compounds present in the extract. The green biosynthesised S. cumini AgNPs significantly inhibited the growth of human pathogenic both gram‐positive Staphylococcus aureus (1.40 mm) and gram‐negative bacteria Escherichia coli (2.75 mm) and Salmonella typhimurium (1.45 mm) showing promising antimicrobial activity.Inspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, antibacterial activity, biomedical materials, visible spectra, ultraviolet spectra, Fourier transform infrared spectra, microorganismsOther keywords: green‐route mediated synthesis, silver nanoparticles, Syzygium cumini, Skeels polyphenolic‐rich leaf extracts, antimicrobial activity, medicinal plants, African population, nanotechnology, physical methods, nanomaterials, metallic nanoparticles, AgNO3 solution, polyphenolic‐rich leaf extracts, capping agent, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, FTIR, eugenols, terpenes, aromatic compounds, green biosynthesis, human pathogenic growth, gram‐positive Staphylococcus aureus, gram‐negative bacteria Escherichia coli, Salmonella typhimurium, antimicrobial activity, size 2.75 mm, size 1.45 mm, size 1.40 mm, Ag  相似文献   

16.
p ‐Hydroxyphenylacetate 3‐hydroxylase component 1 (C 1) is a useful enzyme for generating reduced flavin and NAD+ intermediates. In this study, poly(lactide‐co‐glycolide) (PLGA) nanoparticles (NPs) were used to encapsulate the C 1 (PLGA‐C 1 NPs). Enzymatic activity, stability, and reusability of PLGA‐C 1 NPs prepared using three different methods [oil in water (o/w), water in oil in water (w/o/w), and solid in oil in water (s/o/w)] were compared. The s/o/w provided the optimal conditions for encapsulation of C 1 (PLGA‐C 1,s NPs), giving the highest enzyme activity, stability, and reusability. The s/o/w method improves enzyme activity ∼11 and 9‐fold compared to w/o/w (PLGA‐C 1,w NPs) and o/w (PLGA‐C 1,o NPs). In addition, s/o/w prepared PLGA‐C 1,s NPs could be reused 14 times with nearly 50% activity remaining, a much higher reusability compared to PLGA‐C 1,o NPs and PLGA‐C 1,w NPs. These nanovesicles were successfully utilised to generate reduced flavin mononucleotide (FMN) and supply this cofactor to a hydroxylase enzyme that has application for synthesising anti‐inflammatory compounds. Therefore, this recycling biocatalyst prepared using the s/o/w method is effective and has the potential for use in combination with other enzymes that require reduced FMN. Application of PLGA‐C 1,s NPs may be possible in additional biocatalytic processes for chemical or biochemical production.Inspec keywords: nanoparticles, enzymes, biotechnology, biochemistry, recycling, catalysts, nanofabrication, encapsulationOther keywords: reductase component, poly(lactide‐co‐glycolide) nanoparticles, emulsification techniques, p‐hydroxyphenylacetate 3‐hydroxylase component, NAD+ intermediates, PLGA, enzymatic activity, PLGA‐C1 reusability, water in oil in water methods, solid in oil in water methods, oil in water methods, optimal conditions, encapsulation, enzyme stability, enzyme reusability, s/o/w method, reduced flavin mononucleotide, hydroxylase enzyme, anti‐inflammatory compounds, recycling biocatalyst, FMN, biocatalytic processes, biochemical production, chemical production  相似文献   

17.
In this investigation, the biological synthesis method was adopted to synthesise silver nanoparticles (AgNPs) by using the leaf extracts of Cleistanthus collinus (C. collinus). This plant has traditionally been used to remove the harmful pest from the agriculture field. Leaf extract of C. collinus was used as bioreductant on the precursor solvent of AgNO3. The synthesised AgNPs were characterised by spectroscopic method such as UV–vis spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, dynamic light scattering and microscopic method by field‐emission scanning electron microscopy analysis. The AgNPs were studied for both antibacterial and antifungal activities and found to exhibit potential antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa. The anticancer activity of AgNPs was screened against A‐431 osteosarcoma cell line by [3‐(4, 5‐dimetheylthiazol‐2)‐2, 5 diphenyl tetrazolium bromide] assay and the IC50 value was found to be 91.05 ± 1.53 μg/ml. This trend of eco‐friendly stable synthesis of AgNPs could prove a better substitute for the chemical methods and offer greater opportunity to use these nanosilvers in agricultural and biomedical sectors.Inspec keywords: bio‐inspired materials, silver, nanoparticles, nanomedicine, antibacterial activity, cancer, biomedical materials, microorganisms, nanofabrication, attenuated total reflection, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, light scattering, scanning electron microscopy, field emission electron microscopy, cellular biophysicsOther keywords: bio‐inspired synthesis, silver nanoparticles, Cleistanthus collinus, antibacterial activity, anticancer activity, leaf extracts, biological synthesis method, bioreductant, precursor solvent, UV‐visible spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, dynamic light scattering, field‐emission scanning electron microscopy, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, A‐431 osteosarcoma cell line, 3‐(4, 5‐dimetheylthiazol‐2)‐2,5 diphenyl tetrazolium bromide assay, eco‐friendly stable synthesis, Ag  相似文献   

18.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

19.
Biosynthesis of nanoparticles through plant extracts is gaining attention due to the toxic free synthesis process. The environmental engineering applications of many metal oxide nanoparticles have been reported. In this study, iron oxide nanoparticles (Fe2 O3 ‐Nps) were synthesised using a simple biosynthetic method using a leaf extract of a mangrove plant Rhizophora mucronata through reduction of 0.01 M ferric chloride. Fe2 O3 ‐Np synthesis was revealed by a greenish colour formation with a surface plasmon band observed close to 368 nm. The stable Fe2 O3 ‐Np possessed excitation and emission wavelength of 368.0 and 370.5 nm, respectively. The Fourier‐transform infrared spectral analysis revealed the changes in functional groups during formation of Fe2 O3 ‐Np. Agglomerations of nanoparticles were observed during scanning electron microscopic analysis and energy‐dispersive X‐ray spectroscopic analysis confirmed the ferric oxide nature. The average particle size of Fe2 O3 ‐Np based on dynamic light scattering was 65 nm. Based on transmission electron microscopic analysis, particles were spherical in shape and the crystalline size was confirmed by selected area electron diffraction pattern analysis. The synthesised Fe2 O3 ‐Np exhibited a good photodegradation efficiency with a reduction of 83 and 95% of phenol red and crystal violet under irradiation of sunlight and florescent light, respectively. This report is a facile synthesis method for Fe2 O3 ‐Np with high photodegradation efficiency.Inspec keywords: photochemistry, dyes, nanofabrication, transmission electron microscopy, scanning electron microscopy, nanoparticles, iron compounds, X‐ray diffraction, catalysts, catalysis, particle size, X‐ray chemical analysis, electron diffraction, Fourier transform infrared spectra, surface plasmonsOther keywords: energy‐dispersive X‐ray spectroscopic analysis, ferric oxide nature, transmission electron microscopic analysis, selected area electron diffraction pattern analysis, iron oxide nanoparticles, plant extracts, toxic free synthesis process, metal oxide nanoparticles, metal nanoparticles, nanofiltration, nanobiocides, Rhizophora mucronata Lam, crystalline size, phenol red, crystal violet, sunlight irradiation, florescent light, scanning electron microscopic analysis, Fourier‐transform infrared spectral analysis, surface plasmon, ferric chloride, leaf extract, nanocatalysts, nanoadsorbents, photocatalytic degradation, synthetic dyes, mangrove plant, water remediation, wastewater pollutant, wavelength 370.5 nm, wavelength 368.0 nm, Fe2 O3   相似文献   

20.
A biological method for synthesising silver nanoparticles (AgNPs) was developed using the callus extracts from Artemisia annua L. under sunlight at 25,000 lx. The AgNPs were characterised using transmission electron microscopy, atomic force microscope, X‐ray diffraction and Fourier transform infrared spectroscopy. The AgNPs were mostly spherical with the size of 2.1 to 45.2 nm (average 10.9 nm). Pulse treatments of AgNPs at 125, 250 and 500 mg/l for 1 h extended vase life of cut carnation (Dianthus caryophyllus cv. Green Land) flowers. Four dominant bacteria strains Arthrobacter arilaitensis, Kocuria sp., Staphylococcus equorum and Microbacterium oxydans were isolated from the stem‐ends of cut D. caryophyllus flowers. AgNP pulse inhibited significantly bacterial growth in vase solution and cut stem ends during all of the vase period. The bacteria related blockage in the stem‐ends was significantly alleviated by AgNP pulse because of its higher antibacterial efficacy against the dominant bacteria. In addition, ethylene release of cut carnation flowers was inhibited in response to AgNP pulse. This is the first time that the biologically synthesised AgNPs could be applied as a promising preservative agent for cut carnation flowers.Inspec keywords: nanofabrication, silver, nanoparticles, microorganisms, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, Fourier transform infrared spectraOther keywords: biosynthesis, silver nanoparticles, Artemisia annua callus, stem end bacteria, cut carnation flowers, biological method, transmission electron microscopy, atomic force microscope, X‐ray diffraction, Fourier transform infrared spectroscopy, Dianthus caryophyllus cv. Green Land, Arthrobacter arilaitensis, Kocuria sp, Staphylococcus equorum, Microbacterium oxydans, ethylene release, time 1 h, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号