首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal dusting of Fe-Ni-Cr alloys has been observed in industrial processes in strongly carburizing atmospheres at temperatures from 450°C to 800°C. At temperatures below 650°C the alloys are generally not able to form dense, well adherent oxide layers in spite of relatively high Cr-contents, therefore, metal dusting can take place. Already a lot of experimental work has been done to elucidate the mechanism and to compare the resistance against metal dusting for high alloy steels [1]. The intention of this study was to obtain additional information concerning the role of alloying elements and the effects of carbide precipitates in austenitic high alloy steels such as Alloy 800. The susceptibility to metal dusting was determined by measuring the metal loss under metal dusting conditions of Fe-20%Cr-32%Ni alloys modified with additions of different carbide formers (W, Mo, Nb) or oxide formers (Si, Al). The samples were exposed at 600°C in a CO-H2-H2O-gas mixture for repeated periods up to 500 – 1500 h. The attack by the oxidizing and carburizing atmosphere leads to the precipitation of internal carbides and metal dusting and more or less to formation of an oxide layer. In comparison to the undoped material, the addition of carbide formers retards the initiation of metal dusting attack. The additions of Si and Al seem to prevent metal dusting under the given laboratory conditions. When carbides are present at the metal surface, they affect the initial oxide growth and have a negative effect on the protectivity of scales. Very striking is the effect of Ce, this rare earth element is generally known to favour Cr-oxide formation and to improve the adherence of the oxide layer [2], but in the case of metal dusting it clearly enhances metal dusting and metal wastage.  相似文献   

2.
The corrosion phenomenon named metal dusting has been observed in many high‐temperature industrial plants. An experimental research programme is being carried out into the degradation resistance of wrought and cast commercial and development high‐temperature alloys in H2/CO gas mixtures at temperatures of 550°C to 750°C. Emphasis is placed on very high carbon activities, consistent with the next generation of steam‐reforming and similar plants that are susceptible to metal dusting. The overall programme is concerned with the mechanisms of initiation and propagation of dusting and the sensitivity to damage of the more resistant alloys, as a function of environmental parameters. Initial tests have been carried out on a number of commercial alloys: Alloy 600, 693, 602CA, 601, 603 XL, 671, 617, 690 (wrought), and H46M (cast). The specimens were exposed to a gas mixture of high carbon activity at 650°C for a total of 1000 hours. Many of the alloys showed at least the initial stages of metal dusting. Preliminary analysis using electron microscopy revealed that initiation of metal dusting is influenced by microstructure, stress state and composition. In some cases, attack was enhanced at stress points, such as corners and edges. Sample holders were found to influence strongly the length of the initiation period for the onset of the corrosion phenomenon. The reaction layers in the alloy beneath areas of damage were analysed by EDX and EPMA. Mechanical characterisation of such areas has been carried out using nanoindentation methods. These early results are discussed in terms of the effectiveness of oxide scales in inhibiting the onset of damage and presence of impurities in the ceramic holder in initiating the onset of damage.  相似文献   

3.
Metal dusting, the disintegration of metallic materials into fine metal particles and graphite was studied on nickel, Fe Ni alloys and commercial Ni-base alloys in CO H2 H2O mixtures at temperatures between 450–750°C. At carbon activities ac > 1 all metals can be destroyed into which carbon ingress is possible, high nickel alloys directly by graphite growth into and in the material, steels via the intermediate formation of instable carbide M3C. Protection is possible only by preventing carbon ingress. Chromium oxide formation is the best way of protection which is favoured by a high chromium concentration of the alloy and by a surface treatment which generates fast diffusion paths for the supply of chromium to the surface. The metal dusting behaviour of Alloy 600 is described in detail. A ranking of the metal dusting resistance of different commercial nickel-base alloys was obtained by exposures at 650°C and 750°C.  相似文献   

4.
Welded Ni‐base alloys and Alloy 800 were exposed under metal dusting conditions at 600°C and 650°C for up to 6000 hours. Alloy 800 was attacked very strongly already in the first days and Alloy 600 also rather soon and widespread, on both materials attack started mainly in the heat affected zone. Several surface states of Alloy 600: brushed, ground, sand‐blasted and pickled were tried only grinding caused a modest delay and decrease of metal dusting attack. Generally the attack was less widespread but deeper at 650°C than at 600°C, also for Alloy 601 and 602. The latter alloys show minor, mainly local attack, but especially the welds are affected. TIG welding led to better resistance than hand‐welding.  相似文献   

5.
Metal dusting, i.e. disintegration into fine metal particles and carbon, was induced on a selection of chromia forming high temperature alloys in a flowing CO-H2-H2O atmosphere in exposures at 650°C, 600°C, 500°, and 450°C. The materials were pretreated by annealing in H2 at 1000°C and electropolishing, this leads to large grain size and low surface deformation, both is disadvantageous for formation of a Cr2O3 scale. The resistance to metal dusting is only dependent on the ability to form a protective Cr2O3 scale, thus the high Cr ferritic steels proved to be very resistant, the ferritic steels with 12–13% Cr were less resistant. Due to the lower Cr diffusivity in the austenitic steels, these were very susceptible, especially two alloys with about 30% Ni (Alloy 800, AC 66). The appearance of metal dusting was somewhat different for Ni-base materials but they were also attacked under pitting. The metal dusting is preceded in all cases by internal carburization whereby the chromium is tied up, afterwards the remaining Fe or Fe-Ni matrix can react to the instable intermediate carbide M3C which decomposes to metal particles and carbon, in case of Ni-base materials a supersaturated solid solution of carbon is the intermediate.  相似文献   

6.
Samples of 5 high Cr‐alloys were discontinuously exposed for 10,000 hours under severe metal dusting conditions, i. e. in flowing 49%CO‐49%H2‐2%H2O at 650°C. After each of the 11 exposure periods the mass change was determined and any coke removed and weighed. Metallographic cross sections were prepared after about 4,000 h and 10,000 h. The high Cr‐alloys: 1. PM 2000 (Fe‐19%Cr‐5.5%Al‐0.5%Ti‐0.5%Y2O3), 2. Cr‐44%Fe‐5%Al‐0.4%Ti‐0.5%Y2O3, 3. Cr‐50%Ni, 4. Cr‐5%Fe‐1%Y2O3 and 5. porous chromium showed no or only minute metal dusting attack. Compared to the attack on reference samples of Alloy 601 (Ni‐23%Cr‐14%Fe‐1.4%Al), the metal dusting symptoms were negligible on the 5 high Cr‐alloys, minor coking and pitting and no internal carburization was observed. Because of the high Cr‐content, carbon solution and ingress should be minute, and in addition are inhibited by the formation of a chromia scale, as confirmed for four of the Cr‐rich alloys, and formation of an alumina scale on PM 2000. These alloys could be used for parts exposed to severe metal dusting conditions, and in fact, 50Cr‐50Ni has been applied successfully under such conditions.  相似文献   

7.
Alloys of γ-Ni(Al), γ–γ′ Ni(Al)–Ni3Al, γ′–Ni3Al and β-NiAl were exposed in 1 h cycles to a carbon-supersaturated CO–H2–H2O gas mixture (a C = 36.7, ${{p_{{\rm O}_2}}} $  = 2.83 × 10?26 atm) at 650 °C and an overall pressure of 1 atm. It was found that all alloys except β-NiAl had been attacked by metal dusting, leaving a layered structure of nickel particles, graphite and catalytically grown nano-sized carbon filaments as the corrosion product. Carbon uptake and metal wastage rates were slowed with increasing aluminium content for the single-phase alloys. However, the γ–γ′ two phase alloy had the overall highest metal loss rate. Surface morphologies reflected uniform attack for the γ and γ–γ′ alloys, whereas on γ′ a pitting type of attack was observed. Amorphous alumina formation was identified on the surface of the γ′ and β alloys, and is thought to be the major factor providing protection against dusting attack.  相似文献   

8.
The effect of pressure on metal dusting initiation was studied by exposing conventional alloys 600 and 800H in CO-rich syngas atmosphere (H2, CO, CO2, CH4, H2O) at ambient and 18 bar total system pressure and 620 °C for 250 h. It was verified that, at constant temperature, increasing the total system pressure increases both oxygen partial pressure (pO2) and carbon activity (a C), simultaneously. Both samples exposed at ambient pressure showed very thin oxide scale formation and no sign of metal dusting. By contrast, samples exposed in the high-pressure experiment showed severe mass loss by metal dusting attack. Iron- and chromium-rich oxides and carbides were found as corrosion products. The distinct pressure-dependent behavior was discussed by considering both thermodynamic and kinetic aspects with respect to the protective oxide formation and pit initiation.  相似文献   

9.
The current work investigated the impact of surface condition on the metal dusting behavior of chromia forming alloys. Five commercial alloys were included in the study, wrought 800H, 353MA, and cast G4859, G4852 Micro, and ET45 Micro, these alloys have a chromium and nickel content in the range of 20–35 wt% and 32–45 wt%, respectively. The wrought alloys were tested in a pickled state and the cast alloys with a machined surface, all the alloys were tested using a laboratory ground surface condition for comparison. The exposures were performed using a gas with a composition of 44 vol% CO, 52 vol% H2, 2 vol% CO2, and 2 vol% H2O at a temperature of 600 °C and a pressure of 5.5 bar. The samples were periodically characterized by measuring the mass loss, pit density, pit size, and pit depth. The results show that the pickled surfaces were sensitive toward metal dusting attack while the machined and the ground surfaces had better resistance. This shows that the surface pre‐treatment plays a crucial role.  相似文献   

10.
The metal dusting behaviour of total 11 nickel‐ and cobalt‐base alloys at 680 °C in a gas of 68%CO? 31%H2? 1%H2O (aC = 19.0, = 5.4 × 10?25 atm) was investigated. All samples were electropolished and reacted in a thermal cycling apparatus. On the basis of their reaction kinetics, these alloys can be classified into three groups: the first, with rapid carbon uptake and significant metal wastage, consists of alloys of relatively high iron content (AC 66, 800H and NS‐163); the second, with intermediate rates, consists of some Co‐base alloys (HAYNES 188, HAYNES 25 and ULTIMET) and the third, with very low reaction rates, consists of nickel‐base alloys with high chromium levels (601, HAYNES HR 160, 230, G‐35 and EN 105). An external chromia scale protected group 3 alloys from carburization and dusting. However, this protective scale was damaged and not rehealed for group 1 and group 2 alloys, allowing carbon attack. In all cases, coke deposited on the surface with two typical morphologies: filaments and graphite particle clusters. Subsurface spinel formation in high iron‐content alloys led to rapid dusting due to the significant volume expansion. Alloy carbon permeability was calculated from a simple law of mixtures, and shown to correlate reasonably well with initial dusting rate except for one cobalt‐base alloy in which iron spinel formation was significant.  相似文献   

11.
Nanoprocesses of metal dusting have been studied on nickel single crystal surfaces by TEM and AEM techniques. The samples had been exposed to strongly carburizing conditions (aC > 1) for 4 h at 650°C. On Ni(111) and Ni(110) epitaxial growth of graphite was observed, graphite layers with their basal planes had grown parallel to the surface and there was no indication of metal dusting attack. In contrast, on Ni(100) metal dusting had started by inward growth of graphite lattice planes oriented more or less vertically to the surface.  相似文献   

12.
Iron aluminides are known for their resistance to high temperature oxidation and sulphidation. Only little information is available about carburisation and metal dusting of Fe‐Al alloys. Metal dusting experiments with Fe‐15Al and Fe‐15Al‐2M‐1C alloys (in at.%) with M = Ti, V, Nb, or Ta were conducted at 650°C in CO‐H2‐H2O gas mixtures with the carbon activity ac = 28. The kinetics of the carbon transfer was measured using thermogravimetric analysis (TGA). It is shown that the mass gain kinetics decreases by adding the alloying elements Nb, Ta, V, or Ti with C. Alloying with titanium and carbon leads to the most significant decreasing effect. The metallographic cross section observation showed a general metal wastage for Fe‐15Al, but local pitting for the Fe‐15Al‐2Nb‐1C and Fe‐15Al‐2Ta‐1C alloys. For the Fe‐15Al‐2V‐1C and Fe‐15Al‐2Ti‐1C alloys no significant attack was observed. Needle‐ or plate‐like Fe3AlCx precipitates were detected in the carburised samples. The existence of this ternary carbide with perovskite structure was predicted by thermodynamic calculations using the software Thermo‐Calc. The morphology of graphite on the surface was analysed by scanning electron microscopy (SEM). Mainly fine filaments with iron containing particles were detected. Cementite was detected in the coke layer by X‐ray diffraction analysis (XRD).  相似文献   

13.
The metal dusting of two low alloy steels was investigated at 475°C in flowing CO-H2-H2O mixtures at atmospheric pressure and aC > 1. The reaction sequence comprises: (1) oversaturation with C, formation of cementite und its decomposition to metal particles and carbon, and (2) additional carbon deposition on the metal particles from the atmosphere. The metal wastage rate r1 was determined by analysis of the corrosion product after exposures, this rate is constant with time und virtually independent of the environment. The carbon deposition from the atmosphere was determined by thermogravimetry, its rate r2 increases linearly with time, which can be explained by the catalytic action of the metal particles – periodic changes are superposed. The rate of carbon deposition r2 is proportional to the carbon activity in the atmosphere. The metal dusting could not be suppressed by increasing the oxygen activity or preoxidation, even if magnetite should be stable. Addition of H2S, however, effectively suppresses the attack.  相似文献   

14.
Nanocrystalline (NC) Ni–Cr coatings, containing 5, 10 and 20 wt% Cr were prepared using magnetron sputtering deposition, on the substrates of the same composition materials. These alloys were tested in 47 %CO–47 %H2–6 %H2O for 50 h at 650 °C. Weight gain kinetics showed that increasing Cr content decreased the carburisation kinetics. After reaction, the NC coatings containing high Cr (10 and 20 wt%) remained, with the formation of surface and inner Cr2O3 and internal precipitates of fine carbon deposits for Ni–10Cr and Cr7C3 for Ni–20Cr. In contrast, the Ni–5Cr coated sample suffered a severe metal dusting with whole coating scale was destroyed completely. Preoxidation of these alloys and their miro-grained counterparts was conducted before metal dusting. It was found that preoxidation significantly reduced weight gain kinetics. This reduction effect is more significant for NC Ni–Cr alloys than the micro-grained alloys. The critical chromium concentration for protective chromia scale formation and for internal chromium carbide formation were discussed using Wagner’s analysis and product solubility calculation, respectively. The effects of preoxidation and grain size on oxide formation and carburisation/metal dusting were also discussed.  相似文献   

15.
In this work experiments on metal dusting of binary iron aluminium alloys with 15, 26 and 40 at.% Al were performed in strongly carburising CO‐H2‐H2O gas mixtures at 600 °C. The mass gain kinetics was measured using thermogravimetric analysis (TGA). The carburised samples were characterised by means of light optical microscopy (LOM), scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). It was found that the mass gain kinetics depends on the CO content of the gas mixtures and on the Al content of the alloys. With decreasing carbon activity the carburisation reaction kinetics decreases and the onset of metal dusting is retarded for increasing time periods. With increasing Al content of the alloys the carburisation reaction is slower and metal dusting sets on at later times. The samples were not pre‐treated for the formation of a protective oxide scale. By X‐ray Photoelectron Spectroscopy (XPS) analyses of the carburised iron aluminium samples it was found that the formation of Al2O3 layers has taken place in the CO‐H2‐H2O gas atmospheres. Needle‐ or plate‐like κ‐phase (Fe3AlCx) precipitates close to the surface of the carburised Fe‐15Al sample were detected by means of XRD and LOM. The coke on top of the carburised samples mainly consists of filamentous carbon with metal particles at their tips.  相似文献   

16.
The present study focuses on a new technique for the prevention of metal dusting in carbonaceous gas environments at intermediate temperature. Preliminary laboratory metal dusting test was conducted for transition‐metals and Ni‐x%Cu binary alloys in a simulated 60%CO‐26%H2‐11.5%CO2‐2.5%H2O (in vol.%) gas mixture at 650°C for 100 h. The metal dusting caused no coke deposition on transition‐metals of Cu, Ag, and Pt, while those of Fe, Co, and Ni have a large amount of coke and lost mass. Whether or not coking behavior of Ni‐Cu binary alloys formed any oxide scales in the simulated gas environment depended on the Cu content. Specimens containing low Cu were entirely covered with coke and showed rough metal surfaces due to the degradation of metal. Alloys of 20% and more Cu, on the contrary, had no coke deposition and smooth metal surfaces, suggesting alloys with an adequate Cu do not react with CO in the gas mixture without an oxide scale barrier. Based on these results, we conclude that Cu does not protect by formation of the oxide scale but has a “Surfactant‐Mediated Suppression” against metal dusting. This effect can be explained in terms of atomistic interaction of CO with transition‐metal surfaces by electronic structure analyses. The concept can be also useful for the practical material design of Ni‐Cr base alloy with excellent metal dusting resistance.  相似文献   

17.
Metal dusting is a deterioration of metallic materials in strongly carburizing atmospheres under disintegration into a dust of carbon and fine metal particles (coke). The intermetallic compound Fe3Al is also very susceptible to metal dusting and disintegrates under formation of vast amounts of coke. The mechanism corresponds to the metal dusting of iron and steels, Fe3C is formed as an intermediate and the Al is oxidized. With increasing Cr-addition and with increasing Ni-content in alloys (Fe,Ni)3Al-Cr the materials become more resistant, Ni3Al is not attacked by metal dusting.  相似文献   

18.
Copper is thought to be noncatalytic to carbon deposition from gas atmospheres, and owing to its extremely low solubility for carbon, inert to the metal dusting reaction. Thus, the addition of copper to nickel, which forms a near perfect solid solution, may be able to suppress or greatly retard the metal dusting of the alloy, without the need for a protective oxide scale on the surface. The dusting behaviour of Ni‐Cu alloys containing up to 50 wt% Cu, along with pure Cu, was investigated in a 68%CO‐31%H2‐1%H2O gas mixture (aC: 19) at 680°C for up to 150 h. Surface analysis showed that two types of carbon deposits, graphite particle clusters and filaments, were observed on pure Ni and Ni‐Cu alloys with Cu contents of up to 5 wt%. Alloys with more than 10 wt% Cu showed very little coking, forming filaments only. SEM and TEM analyses revealed metal particles encapsulated by graphite shells within the graphite particle clusters, and metal particles at filament tips or embedded along their lengths. A kinetic investigation showed that alloy dusting rates decreased significantly with increasing copper levels up to 10 wt%. At copper concentrations of more than 20 wt%, the rate of metal dusting was negligible. Although pure copper is not catalytic to carbon formation, scattered carbon nanotubes were observed on its surface. The effect of copper on alloy dusting rates is attributed to a dilution effect.  相似文献   

19.
20.
Metal dusting is a severe form of corrosive degradation that Fe, Co and Ni base high temperature alloys undergo when subjected to environments supersaturated with carbon (ac > 1). This corrosion process leads to the break-up of bulk metal into metal powder. The present study focuses on the fundamental understanding of the corrosion of Fe and Ni in carbon-supersaturated environments over the temperature range, 350–1050 °C. Building on earlier research, the role of deposited carbon in triggering corrosion is further clarified. For Fe, the corrosion rate peaked at ∼ 575 °C with a sharp decrease in rate on either side of the maximum. High-resolution electron microscopy revealed, in addition to metal particles, a mixture of graphitic carbon, amorphous carbon and filamentous carbon in the corrosion product. While the presence of a surface layer of Fe3C was characteristic of corrosion up to 850 °C, such a layer was absent at the higher temperatures. The corrosion rate maximum that typified the metal dusting of Fe was absent in the case of Ni where no surface carbide occurs until temperatures well below 350 °C. The mechanistic differences between iron corrosion and nickel corrosion are compared and contrasted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号