首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Ceramics International》2020,46(3):2960-2968
MXene and metal organic framework (MOF) were used as the main adsorbents to remove synthetic dyes from model wastewater. Methylene blue (MB) and acid blue 80 (AB) were used as the model cationic and anionic synthetic dyes, respectively. To investigate the physicochemical properties of the adsorbents used, we carried out several characterizations using microscopy, powder X-ray diffraction, a porosimetry, and a zeta potential analyzer. The surface area of MXene and MOF was 9 and 630 m2 g−1, respectively, and their respective isoelectric points were approximately pH 3 and 9. Thus, MXene and MOF exhibited high capacity for MB (~140 mg g−1) and AB (~200 mg g−1) adsorption, respectively due to their electrostatic attractions when the concentrations of the adsorbents and adsorbates were 25 and 10 mg L−1. Furthermore, the MOF was able to capture the MB due mainly to hydrophobic interactions. In terms of the advantages of each adsorbent according to our experimental results, MXene exhibited fast kinetics and high selectivity. Meanwhile, the MOF had a high adsorption capacity for both MB and AB. The adsorption mechanisms of both adsorbents for the removal of MB and AB were clearly explained by the results of our analyses of solution pH, ionic strength, and the presence of divalent cation, anion, or humic acids, as well as other characterizations (i.e., Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy). According to our results, MOF and MXene can be used as economical treatments for wastewater containing organic pollutants regardless of charge (e.g., MB and AB), and positively charged one (e.g., MB), respectively.  相似文献   

2.
Waste cigarette filters (CFs) were recycled and modified with a nontoxic and low-cost citric acid (CA). The modified CFs were employed in the adsorptive removal of methylene blue (MB) dye from aqueous medium. The influence of pH, contact time, initial dye concentration, and adsorbent dose on adsorption of MB dye was evaluated. The adsorption studies were conducted by employing linear and nonlinear Langmuir and Freundlich isotherm models. The adsorption capacity of CF obtained through linear and nonlinear Langmuir model were 88.02 and 94 mg g−1, which improved up to 163.93 and 168.81 mg g−1, respectively, after the introduction of functional groups in CF-CA. The adsorption kinetics data were well fitted by pseudo-second order kinetics with coefficient of regression (R2) closed to unity. The removal efficiency of CF-CA was 97% at equilibrium time of 4 h. Desorption studies indicated that CF-CA could be regenerated by using HCl (0.1 M) and desorption efficiency was up to 82% upon second cycle of reusability experiment. This study proposed a green and economical use of recycled CFs in dyes wastewater treatment, simultaneously reducing the negative environmental impact due to their improper disposal.  相似文献   

3.
A latex sponge is modified by chitosan, tannic acid, and silane coupling agent KH550 to prepare an oleophobic sponge adsorbent, which can adsorb different kinds of charged dyes and Cu2+. The static adsorption capacity of the latex sponge before and after modification to methyl orange (MO) (negative charge), rhodamine B (RB) (neutral), methylene blue (MB) (positive charge), and Cu2+ under different initial concentration, pH, and reaction temperature are investigated, and simulations of adsorption kinetics and isotherms are performed. The modified latex sponge improves the overall adsorption capacity along with the initial concentration and increases reaction temperature. The adsorption capacity of the adsorbent expands; when the pH is low, it is beneficial to adsorb MO and RB, and when the pH is high, it is favorable for the adsorption of MB and Cu2+. Adsorption kinetics and isotherm data show that the isotherm dates of pure latex sponge conform to the Langmuir isotherm model, while the isotherm dates of modified latex sponge conform to the Freundich isotherm model; however both of them are more fitted with the pseudo-second-order adsorption model, and the chemical adsorption is the main one.  相似文献   

4.
Chitosan-modified palygorskite (CTS-modified PA) was prepared by surface grafting of PA with chitosan, and the CTS-modified PA was used as an effective adsorbent for the removal of reactive dye. The effects of various experimental parameters such as initial pH, adsorbent dosage, contact time and initial dye concentration on adsorption were investigated. The adsorption behavior of CTS-modified PA showed that the adsorption kinetics and isotherms were in good agreement with the pseudo-second-order equation and the Langmuir equation, and the maximum adsorption capacity of CTS-modified PA calculated by the Langmuir model was 71.38 mg g 1, which was much higher than that of the unmodified PA (6.3 mg g 1).  相似文献   

5.
N-succinyl-chitosan-g-polyacrylamide/attapulgite (NSC-g-PAM/APT) composite was applied as adsorbent for the removal of methylene blue (MB) from aqueous solution. The initial pH value of the dye solutions, the contact temperature, the contact time and the concentration of the dye solutions on adsorption capacity of the composite for MB dye were investigated. The adsorption kinetics and isotherms were also studied. It was shown that all the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation. The results indicated that the adsorption capacity of the composite was higher than those of chitosan (CTS) and attapulgite (APT). The desorption studies revealed that the composite provided the potential for regeneration and reuse after MB dye adsorption, which implied that the composite could be used as quite effective adsorbent for the removal of MB from aqueous solution.  相似文献   

6.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
This study aimed to prepare an efficient, cost-effective, and separable magnetic zeolite/chitosan composite (MZFA/CS) adsorbent from solid waste to deal with the water pollution of Cr(VI). The MZFA/CS was characterized by X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) techniques. Then, the effect of pH, temperature, initial concentration of Cr(VI) ions, and contact time was considered in the study. For a sorbent dose of 0.1 g in 50 mL of a Cr(VI) solution, at a contact time of 30 min, temperature of 30°C, and a pH of 3, an adsorption capacity (qe) of 16.96 mg g−1 was achieved. Adsorption kinetics and isotherm data obtained for all adsorption systems were well-fitted by pseudo-second-order and Langmuir models, respectively. The thermodynamic study suggested that the adsorption process is spontaneous and endothermic in nature. In summary, the adsorbent with better separability (Ms = 16.83 emu g−1) and adsorbability was successfully fabricated.  相似文献   

8.
An adsorbent was prepared from acetic acid lignin (AAL) to investigate the adsorption mechanism of methylene blue (MB) from water. AAL was first deacetylated in NaOH aqueous solution and then fractionated by methanol to prepare adsorbents with various acidic hydroxy groups. The adsorption capacities of MB increased with the increase in initial pH and with the decrease in adsorbent dosage. The results of adsorption kinetics indicated the dye uptake process is a chemisorption. The adsorption capacity of lignin for MB adsorption increased from 18.2 to 63.3 mg g?1 as AAL was deacetylated and fractionated.  相似文献   

9.
This study analyzed the viability of using malacoculture residue (Mytella falcata) to produce layered double hydroxides (LDHs) and for its subsequent use as an adsorbent. The CaAl/LDH-RE material was produced with calcium oxide from the residue and the CaAl/LDH-AP was produced with a commercial reagent. Both were used to remove methyl orange (MO) and methylene blue (MB) dyes. The CaAl/LDH-RE presented a surface area of 28.54 m2 g−1, being 65.62% larger than the CaAl/LDH-AP material (17.23 m2 g−1). The adsorbents showed mesopores distributed on a surface formed by plates in the form of hexagonal sheets arranged in an overlapping manner. The dosage of 0.05 g L−1 obtained the removal of 95% and 97% for MO, while for MB it was 94% and 93% using the adsorbents LDH/CaAl-AP and LDH/CaAl-RE, respectively. The system reached equilibrium at 90 min for MO and 120 min for MB. The pseudo-second order model well represented the kinetic data reaching 11.36 mg g−1 (CaAl/LDH-RE) and 8.42 mg g−1 (CaAl/LDH-AP) for MO, and 4.47 mg g−1 (CaAl/LDH-RE) and 4.14 mg g−1 (CaAl/LDH-AP) for MB. The Freundlich model better represented the isothermal data, where the temperature exerted little influence. Adsorbents showed similar removal percentages in real and synthetic matrices. The LDH/CaAl-RE can be applied in up to 3 cycles, maintaining its adsorption capacity. These results corroborate the use of MFW to produce CaAl/LDH-RE, which can be used for the efficient removal of organic pollutants in an aqueous solution.  相似文献   

10.
A novel chitosan-based adsorbent (CCTM) was prepared by the reaction of epichlorohydrin O-crosslinked chitosan with maleic anhydride under microwave irradiation. The chemical structure of this polymer was characterized by infrared spectroscopy and X-ray diffraction analyses. The effects of various variables such as degree of substitution, adsorption time, initial metal ion concentration, solution pH, and temperature, on the adsorption of Pb2+ and Cu2+ by CCTM were investigated. The results demonstrate that the microwave irradiation can remarkably enhance the reaction. CCTM has higher adsorption capacity than chitosan. The maximum adsorption capacities for Pb2+ and Cu2+, with initial concentrations of 0.02 mol L−1 at pH 5, are 246.3 and 132.5 mg g−1, respectively. The adsorbent can be recycled. These results have important implications for the design of effective chitosan-based adsorbents in the removal of heavy metal ions from wastewaters. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
This work developed an effective way to improve the methylene blue (MB) adsorption performance of cellulose-based hydrogel by modified with tannic acid (TA). HEC-co-p(AA-AM)/TA hydrogel was synthesized by grafting of acrylic acid (AA) and acrylamide (AM) onto hydroxyethyl cellulose (HEC), followed by modified with TA. Fourier transform infrared spectroscopy manifested that AA and AM were successfully grafted onto the hydrogel, and TA was immobilized in the hydrogel. Field emission scanning electron microscope demonstrated that the hydrogel after TA modification had a homogeneous pore structure. Brunauer-Emmett-Teller (BET) surface areas, total pore volume, and average pore diameters of the hydrogel are 11.821 m2 g−1, 0.0641 cm3 g−1, and 2.538 nm, respectively. The high swelling ratio (1179.2 g g−1 in deionized water) was in favor of the MB adsorption. The results of the adsorption experiments illustrated that HEC-co-p(AA/AM) hydrogel had excellent MB adsorption performance. As the pH increases, the electrostatic attraction is enhanced, and the adsorption capacity is improved. The adsorption process was more fit with pseudo-second-order kinetics, and the maximum adsorption capacity (3438.27 mg g−1) was determined by Langmuir model. Thermodynamic studies suggested that the adsorption process is spontaneous, exothermic, and entropy reduction. X-ray photoelectron spectroscopy analysis confirmed that MB molecules were reacted with the oxygen atoms in hydroxyl and carboxyl groups by ion-exchange. High reusability demonstrated that the hydrogel could be a potential candidate for removal cationic dye from industrial effluents.  相似文献   

12.
In this study, we designed a novel hydrogel composite membrane based on the combination of polyvinyl alcohol (PVA), agar, and maltodextrin through a facile solution-casting router. From Fourier-transform infrared spectroscopy, contact angle, scanning electron microscopy, and swelling analyses, the formation of hydrogen bonds between surface functional groups of PVA, agar, and maltodextrin was confirmed. As a result, the PVA/agar/maltodextrin membranes exhibited a more hydrophobic nature compared with pure PVA. The thermal stability and integrity of such obtained composite membranes were also elucidated by the evaluation of thermogravimetric analysis and mechanical behavior. Besides, the composite membrane exhibited high selective adsorption for cationic dyes, namely 20.2 mg g−1 for methylene blue and 19.17 mg g−1 for crystal violet at initial dye concentration of 100 mg/L, an adsorbent dosage of 0.1 g, contact time of 180 min, and solution pH 7, while anionic dyes such as congo red and methyl orange are approximately zero. The adsorption kinetics and isotherm of the as-prepared composite membranes were well fitted to the pseudo-second-order and Temkin model. The effect of factors, including contact time, solution pH, PVA content, and initial dye concentration on the adsorption capacity of the as-prepared composite membrane was also investigated in detail. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48904.  相似文献   

13.
In this article, citric acid modified β-cyclodextrin/activated carbon hybrid (CA-β-CD/AC) composites were synthesized by crosslinking reaction, and their adsorption properties for methylene blue were studied. The scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET) method were used to characterize the structure and the morphology of composite materials. It was investigated that the effect of experiment parameters on the adsorption performance including weight fraction of AC in the composite, the adsorbent dose, the initial concentration of MB, the solution pH value, contact time, and temperature. The maximum adsorption capacity calculated by the Langmuir isotherm is 862.07 mg g−1. Kinetic studies show that the adsorption process follows the pseudo-first-order and pseud-second-order reaction models. Thermodynamic analysis indicated that the adsorption behavior was an exothermic reaction. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48315.  相似文献   

14.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g−1 at pH 4.0 and 25 °C. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl, SO42− and PO43− reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g−1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

15.
The layered material of sodium ferric silicate (SFS) has good adsorption properties for cationic dyes, but its stacking properties limit its application. The organic–inorganic composite assembled by macromolecular polymer and inorganic material can improve this situation. Carboxymethyl chitosan (CC) was loaded onto SFS, and the compound was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), zero energy thermonuclear assembly (Zeta), and Fourier transform infrared spectroscopy (FT-IR). The results showed that CC was successfully supported in the layered structure of SFS, and the adsorption capacity of the composite for methylene blue (MB) was 729.67 mg g−1. The adsorption process was described by pseudo second-order kinetics, Langmuir isothermal equation, and intraparticle diffusion. The adsorption process was endothermic and spontaneous, and the monomolecular adsorption was dominant.  相似文献   

16.
A series of cellulose/polyaniline derivatives [polyaniline (PANI), poly(N‐methylaniline) (PNMANI), and poly(N‐ethylaniline) (PNEANI)] nanocomposites were synthesized by in situ chemical oxidation polymerization method and successfully applied for removal of acid red 4 and direct red 23 dyes from simulated industrial effluents. The synthesized nanocomposites were analyzed using Fourier transform infrared and ultraviolet‐visible spectroscopies, thermogravimetric analysis and scanning electron microscope. The effect of some parameters including pH, adsorbent amount, and initial dyes concentrations on adsorption processes were evaluated. The maximum adsorption capacities (Qm) for the synthesized nanocomposites were calculated, and among them the Cell/PANI sample showed the highest Qm for both AR4 (117 mg g–1) and DR23 (56 mg g–1) dyes. The regeneration and reusability tests exhibited that the synthesized nanocomposites had the relatively good reusability after five repetitions of the adsorption–desorption cycles. According to results, we envision that these nanocomposites, especially Cell/PANI, find application for removal of anionic dyes from industrial effluents mainly due to their low production costs, high adsorption effectiveness, and relatively good reusability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45352.  相似文献   

17.
A novel fibrous adsorbent that grafts glycidyl methacrylate (GMA) and methacrylic acid (MAA) monomer mixture onto poly(ethylene terephthalate) (PET) fibers was used for removal of methylene blue (MB) in aqueous solutions by a batch equilibration technique. The operation parameters investigated included, pH of solution, removal time, graft yield, dye concentration, and reaction temperature. The adsorption rate of MB is much higher on the MAA/GMA‐grafted PET fibers than on the ungrafted PET fibers. MB was removed 99% the initial dye concentration at 10 mg L−1 and 93% at 200 mg L−1 by monomers mixture‐grafted PET fibers. Pseudofirst order and pseudosecond order kinetic equations were used to examine the experimental data of different graft yield. It was found that the pseudosecond order kinetic equation described the data of dye adsorption on fibrous adsorbent very well. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm models. The data was that Freundlich isotherm model fits the data very well for the dyes on the fibers adsorbent. The dye adsorbed was easily desorbed by treating with acetic acid/methanol mixture (50% V/V) at room temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
《分离科学与技术》2012,47(18):2878-2889

The adsorption potential of a cheap, eco-friendly, and highly efficient adsorbent was studied as an alternative substitution of activated carbon for removal of organic anionic dyes from wastewater. The adsorbent (BDHP-Mt) prepared from the reaction of 1,3-bis(dodecyldimethylammonio)-2-hydroxypropane dichloride (BDHP) and Na-montmorillonite (Na-Mt) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetry-derivative thermogravimetry (TG-DTG). Batch adsorption experiments were performed to remove anionic dyes such as Methyl orange (MO) and Congo red (CR) from aqueous solutions, using BDHP-Mt. The effects of pH and contact time under different temperatures on the adsorption capacities of MO and CR onto BDHP-Mt have been investigated. The results showed that the adsorption kinetics of MO and CR onto BDHP-Mt were in good agreement with pseudo-second-order model and the adsorption patterns of MO and CR could be well described by Langmuir isotherm. The comparative adsorption experiments indicated that BDHP-Mt exhibited much higher adsorption capacities (MO 239.11 mg g?1, CR 192.57 mg g?1) than active carbon (MO 203.88 mg g?1, CR 45.26 mg g?1), which may be due to the electrostatic interaction, partition adsorption and the bigger average pore diameter of BDHP-Mt. Thermodynamic experiments revealed that the two adsorption processes were spontaneous and endothermic. All the results implied that BDHP-Mt could be used as an alternative adsorbent of active carbon or other common adsorption materials for the adsorption of anionic dyes from effluents.  相似文献   

19.
The adsorption of methylene blue (MB) on graphene-based adsorbents was tested through the batch experimental method. Two types of graphene-based adsorbents as graphene oxide (GO) and reduced graphene oxide (RGO) were compared to investigate the best adsorbent for MB removal. So that optimizing the MB removal for the selected type of graphene-based adsorbent, the diverse experimental factors, as pH (2–10), contact time (0–1440 min), adsorbent dosage (0.5–2 g/L), and initial MB concentration (25–400 mg/L) were analyzed. The conclusions indicated that the MB removal rised with an increase in the initial concentration of the MB and so rises in the amount of adsorbent used and initial pH. Maximum dye removal was calculated as 99.11% at optimal conditions after 240 min. Adsorption data were compiled by the Langmuir isotherm (R2: 0.999) and pseudo-second-order kinetic models (R2: 0.999). The Langmuir isotherm model accepted that the homogeneous surface of the GO adsorbent covering with a single layer. And the adsorption energy was calculated as 9.38 kJ mol−1 according to the D-R model indicating the chemical adsorption occurred. The results show that GO could be utilized for the treatment of dye-contaminated aqueous solutions effectively.  相似文献   

20.
To enhance adsorption of organic dyes like malachite green (MG) onto polymeric absorbents, we prepared carbon nanotube (CNT) filled polyaniline (PANI) composites with large surface areas by simply using entangled CNTs as porous frameworks during PANI polymerization. Adsorption behavior of the CNT/PANI composites in MG solutions was experimentally investigated and theoretically analyzed. The CNT/PANI composites exhibit much higher equilibrium adsorption capacity of 13.95 mg g?1 at an initial MG concentration of 16 mg L?1, increasing by 15% than the neat PANI, which is mainly attributed to large surface areas and strong CNT‐PANI interactions of the composites. In addition, theoretical analyses indicate that the adsorption kinetics and the isothermal process of the composites can be well explained by using the Ho pseudosecond‐order model and the Langmuir model, respectively. In light of their high MG adsorption and easy operation, the CNT/PANI composites have great potential as high‐efficiency adsorbents for removal of dyes from wastewater. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号