首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coir fibers were retted in distilled water (DW) and saline water (SW) for up to 12 weeks. Fibers had diameters of 0.16 mm to 0.56 mm, gauge lengths (GL) of 20 mm and 50 mm, and loaded at strain rates of 5, 20, 40, and 60 mm/min. Tensile strength, Young's modulus, and strain at break properties were evaluated and the results statistically analyzed using analysis of variance (ANOVA). For non‐retted fibers, as the gauge length decreased, the tensile and strain at break increased by 14% and 42%, respectively, while the stiffness increased by 33% for larger gauge lengths. As the fiber diameter decreased, the tensile strength increased from 48.45 MPa to 134.41 MPa for 50 mm gauge length fibers. X‐ray diffraction (XRD) was used to calculate the crystallinity index (CI) of the coir fibers. Secondary electron microscopy was used to assess the fiber surface and fractured area. Although the chemical composition was different, the properties of Trinidad coir fibers were in‐line with coir fibers from other parts of the world making them an ideal material of choice for composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43692.  相似文献   

2.
High‐performance polyimide fibers possess many excellent properties, e.g., outstanding thermal stability and mechanical properties and excellent radiation resistant and electrical properties. However, the preparation of fibers with good mechanical properties is very difficult. In this report, a biphenyl polyimide from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 4,4′‐oxydianiline is synthesized in p‐chlorophenol by one‐step polymerization. The solution is spun into a coagulation bath of water and alcohol via dry‐jet wet‐spinning technology. Then, the fibers are drawn in two heating tubes. Thermal gravimetric analysis, thermal mechanical analysis, and dynamic mechanical analysis (DMA) are performed to study the properties of the fibers. The results show that the fibers have a good thermal stability at a temperature of more than 400°C. The linear coefficient of thermal expansion is negative in the solid state and the glass transition temperature is about 265°C. DMA spectra indicate that the tanδ of the fibers has three transition peaks, namely, α, β, and γ transition. The α and γ transition temperature, corresponding to the end‐group motion and glass transition, respectively, extensively depends on the applied frequency, while the β transition does not. The activation energy of α and γ transition is calculated using the Arrhenius equation and is 38.7 and 853 kJ/mol, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1653–1657, 2004  相似文献   

3.
As‐received morphologies, defect structures, and contact moduli of Kevlar KM2 Plus and three other ballistic fibers varying in chemistry and processing, were observed and compared using atomic force microscopy (AFM) and instrumented nanoindentation (NI) techniques. Surface features and defects were defined and measured for each fiber chemistry: p‐phenylene terephthalamides (PPTA including KM2 Plus and Twaron), co‐polymer aramid (AuTx), and ultra high molecular weight polyethylene (UHMWPE including Dyneema). Although a multitude of surface defects were observed in each fiber, the types of defects were similar from one fiber type to another. It was found that surface defects generally map to a more compliant local modulus value. Contact modulus values were compared with NI elastic modulus values to demonstrate validity for the AFM technique. Challenges and limitations of the AFM technique for cataloging defects are discussed. This study is the first which attempts to outline the various morphologies found on several fiber surfaces. These local property studies will enable future comparisons with single filament and bulk fiber properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40880.  相似文献   

4.
Silver containing chitosan fibers were prepared by blending fine particles of a silver sodium hydrogen zirconium phosphate compound into the spinning solution. It was possible to distribute the silver containing particles in the chitosan fiber because of the high viscosity of the spinning solution and the small diameter of the particles. Because the silver ions are imbedded inside the sodium hydrogen zirconium phosphate complex, the chitosan fibers remain white in color without being oxidized by the silver ions. The release of silver ions from the silver containing chitosan fibers were studied by placing the fibers in contact with distilled water, solution A, and aqueous protein solutions. Results showed that the release of silver ions was low in water, while in solution A and protein solutions, the silver ions are activated through ion exchange and chelation. The silver ions can significantly enhance the antimicrobial properties of the chitosan fibers. Experimental results showed that when placed in contact with the silver containing chitosan fibers, the reduction in bacteria count can be more than 98%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3622–3627, 2007  相似文献   

5.
As‐received and washed jute fabrics were used as reinforcement for a thermoset resin. The mild treatments performed on the jute fabrics did not significantly affect their physical and thermal behaviors. The washed fibers absorbed less water than the unmodified (as received) ones, indicating that the coating used to form the fabrics was hygroscopic. Measurements of the fiber mechanical properties showed a high dispersion due to fiber irregularities, although the values obtained were in agreement with data reported in the literature. These results were also analyzed with the Weibull method. To investigate the effect of the jute treatments on the interface properties, impact, compression, and tensile tests were carried out. The composites made from as‐received jute had the highest impact energy, which was probably associated with weak interfacial adhesion. Composite samples behaved more ductilely in compression than in tensile situations due to the brittle characteristics of the resin used as matrix. The effect of the orientation of the fibers with respect to the direction of the applied force in the different mechanical tests was also studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 639–650, 2005  相似文献   

6.
7.
Two South‐American plants, native Caranday Palm and Phormium, were characterized to investigate their potential as a source of fibers for the preparation of polymer composites. The plant leaves were subjected to different chemical characterizations, whose results were further corroborated by Fourier transformed infrared spectroscopy and Thermogravimetric analysis techniques. The results showed that leaves from Caranday Palm have higher cellulose content than Phormium leaves. The tensile testing of the technical fibers showed that they may be suitable for use in the production of polymer composites, as the properties are comparable to those of other vegetable technical fibers. Preliminary results on the effect of the incorporation of Caranday Palm fibers into polypropylene lead to a composite of improved modulus and relatively low density. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The correlation between the fiber structure and mechanical properties of two different poly(ethylene terephthalate) fiber types, that is, wool and cotton types produced by three producers, was studied. Fiber structure was determined using different analytical methods. Significant differences in the suprastructure of both types of conventional textile fibers were observed, although some slight variations in the structure existed between those fibers of the same type provided by different producers. A better‐developed crystalline structure composed of bigger, more perfect, and more axially oriented crystallites was characterized for the cotton types of PET fibers. Crystallinity is higher, long periods are longer, and amorphous domains inside the long period cover bigger parts in this fiber type in comparison with the wool types of fibers. In addition, amorphous and average molecular orientation is higher. The better mechanical properties of cotton PET fiber types, as demonstrated by a higher breaking tenacity and modulus accompanied by a lower breaking elongation, are due to the observed structural characteristics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3383–3389, 2003  相似文献   

9.
The structure, morphology, and properties of an ionomer, poly(ethylene‐acrylic‐acid) neutralized by zinc salts (PI) depend on the free carboxylic acid content. In this work, metal acetates (Na, Zn, and Al acetates) were used to control the neutralization levels. A wide range of techniques were used, such as spectroscopic Fourier transform infrared spectroscopy (FTIR), thermal [thermogravimetric analysis, modulated differential scanning calorimetry (MDSC), and dynamic mechanical analysis (DMA)], mechanical (tensile measurement), and small angle neutron scattering (SANS). The melt rheological properties of the samples were also examined. The results show that metal acetate neutralizes free acrylic acid in the ionomer, which has the primary role in controlling ionic association. The number of ionic groups in ionic domains and multiplets in the matrix is dependent on the neutralization level. Metal valence determines the ionic domain or multiplet structure (FTIR), further properties of PI. Dynamic mechanical properties, the ionic transition behaviour, and the mechanical properties are improved compared with PI using monovalent cation (Na+), but decreased using trivalent cation (Al3+) or shows less significant changes due to steric effects. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
A polyamide 66/3-aminopropyl-terminated poly(dimethylsiloxane) (PA66/APDMS)-carboxylate multiwalled carbon nanotubes (CMWNTs) nanocomposite (PA66/APDMS-CMWNTs) was synthesized using a one-pot method, and the product was melt-spun into fibers. The glass transition temperature (Tg) of the PA66/APDMS-CMWNTs nanocomposite fiber is 68.0°C, which is 22% higher than that of the pure PA66 fiber. This result indicates that there is a strong interfacial interaction between APDMS-CMWNTs and the PA66. Furthermore, the crystallinity of PA66/APDMS-CMWNTs nanocomposite fiber reaches a maximum due to the addition of APDMS-CMWNTs. Additionally, the tensile strength and Young's modulus of PA66/APDMS-CMWNTs nanocomposite fiber are 167% and 631% higher, respectively, than that of the pure PA66 fiber. The strengthening mechanism was discussed using force balance-based expression, which demonstrates that the stress on the PA66 is more efficiently transferred to the APDMS-CMWNTs. These results argue that using APDMS-CMWNTs as a filler can enhance the physical-mechanical properties of PA66 with an elevated degree never being reported.  相似文献   

11.
In this work, the fabricated polylactic acid (PLA) and hybrid natural fiber (NF) biocomposites via a melt extrusion method were investigated. NFs from locally grown plants were utilized as fillers. Polyethene glycol (PEG) was used as the plasticizer to improve the processability of the PLA. The effect of PLA/NF biocomposite processing was assessed by mechanical characterization (tensile, modulus, strain at break, and impact tests), and thermal properties (thermogravimetric analysis and differential scanning calorimetry [DSC] analysis). The dynamic mechanical analysis (DMA), and thermo-mechanical analysis (TMA) of the samples were also analyzed. The mechanical properties of PLA/NF biocomposites improved as compared with that of PLA. The DMA findings show that the storage modulus and loss modulus exhibited a slight reduction for PLA/NF biocomposites compared with the PLA sample. In opposite, the glass transition temperature (Tg) from DSC thermogram results showed no obvious changes in values compared with the PLA sample. Furthermore, the findings of TMA showed a significant decrease in coefficient of thermal expansion values of PLA/NF biocomposites compared with those of PLA samples. The overall findings from this work indicated that PLA/NF biocomposites have the potential to make novel biocomposites and suitable for further application especially in biomedical applications due to its good stiffness, tensile strength, and dimensional stability.  相似文献   

12.
To improve the structure and hard elasticity of poly(vinylidene fluoride) (PVDF) fibers, a small amount of the plasticizer dibutyl phthalate (DBP) was added to PVDF. The PVDF/DBP blend fibers were prepared by melt spinning and subsequent annealing. The crystalline structure and thermal properties of the blend fibers were analyzed in terms of the long‐period lamellar spacing, crystal structure, and degree of crystallinity with X‐ray diffraction, differential scanning calorimetry, and small‐angle X‐ray scattering. The results indicated that stacked crystalline lamellae, which were aligned normal to the fiber axis, existed in the blend fibers, and they were in the form of an α‐crystal phase. The total crystallinity of the blend fibers was higher than that of the pure PVDF fibers, and it reached its highest value when the DBP concentration was 2 wt %; then, it decreased with an increase in the DBP content. The morphology and mechanical properties of the fibers were also investigated with scanning electron microscopy and electronic tensile experimentation. The results of scanning electron microscopy apparently exhibited a small porous structure on the surface of the blend fibers, and the more DBP there was in the PVDF fibers, the more porous structure was obtained. Mechanical experiments indicated that the fibers with a 5 wt % concentration of DBP had better elastic recovery and breaking strain than the pure PVDF fibers. These results all indicated that DBP‐modified PVDF fibers have potential applications in preparing microporous membranes by a melt spinning and stretching process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Master batches with four different kinds of functionalized multiwall carbon nanotubes (MWCTs) were prepared through the mixing of MWCTs with poly(ethylene terephthalate) (PET) (0.01 : 0.99 w/w) in trifluoroacetic acid/dichloromethane mixed solvents (0.7 : 0.3 v/v) followed by the removal of the solvents in the mixture by flocculation. The results of scanning electron microscopy showed that a good dispersion of MWCTs in PET was achieved. The reinforced fibers were fabricated by the melt spinning of PET chips with small amounts of the master batch and then further postdrawing. The optimal spinning conditions for the reinforcement of fibers were a 0.6-mm spinneret hole and a 250 m/min wind-up speed. Among the four master batches, the fibers obtained from PET/master batch B made by acid-treatment had the highest enhancement of mechanical properties. For a 0.02 wt % loading of acid-treated MWCT, the breaking strength of the PET/master batch B composite fibers increased by 36.9% (from 4.45 to 6.09 cN/dtex), and the initial modulus increased by 41.2% (from 80.7 to 113.9 cN/dtex). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The miscibility of polystyrene with poly(butyl acrylate) is very poor. Ionic interactions have been utilized recently as miscibility enhancers. In this paper, dynamic mechanical studies indicate that ion pair–ion pair interactions can be utilized to achieve miscibility in blends of polystyrene and poly(butyl acrylate). The styrenes contain 0–15mol% quaternary ammonium salt of 4-vinylpyridine, while the butyl acrylates contain 0–15mol% potassium acrylate groups. The miscibility increases with increase of ion content. When the ion content exceeds 11mol%, the polymers can be completely miscible. The mechanical properties of the ionomers and their blends were also studied. The results indicate that the tensile strength of ionomer blends is higher than that of corresponding poly(butyl acrylate-co-potassium acrylate)s (PBA-AA-K). The elongation at break of ionomer blends is higher than that of the corresponding poly(styrene-co-N-methyl-4-vinylpyridinium iodide) (PS-4VP-Q). © 1998 SCI.  相似文献   

15.
Carbon nanotubes (CNTs) were used to modify polyacrylonitrile (PAN) polymer. The PAN/CNT composite fibers were spun from dimethylformamide solutions containing different types of CNTs. The effect of nanotube addition to the fiber precursor on the resulting mechanical properties is discussed. In this study, we examined the relationship of the rheological properties of PAN spinning solutions containing various types of CNTs and the tensile strength of the resulting PAN fibers. The presence of CNTs in the PAN spinning solution enhanced its deformability during the drawing stage. This effect resulted in a higher tensile strength in the fibers containing nanotubes, as compared to the pure fibers. The use of a three‐stage drawing process resulted in a significant increase in the tensile strength of PAN fibers modified with multiwalled nanotubes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Currently, there is a demand for new engineering materials presenting a combination of strength, low density, processing easiness, and reduced costs. In this context, polymer matrix composites reinforced by natural fibers have been studied in recent years due to their ecological and economic advantages. Some fibers are still little explored in literature despite presenting a great potential as reinforcement like Luffa cylindrica. The present work aims at the preparation and characterization of a vinylester thermoset matrix composite material reinforced by fibers of the natural L. cylindrica fruit after modification treatments. In this study, extraction treatments in organic solvents, mercerization, and a quite new esterification with BTDA dianhydrides were used and the results showed that in all cases, the composite materials reinforced by Luffa fibers have showed improvements in mechanical and thermal properties compared to the vinylester matrix. As an example, 50% tensile increase was obtained for the composite reinforced by fibers esterified with benzophenone tetracarboxylic dianhydride when compared with thermoset matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Alginate and gelatin blend fibers were prepared by spinning their solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2 and ethanol. The structure and properties of the blend fibers were studied with the aid of infrared spectra, scanning electron micrography, X‐ray diffraction, and thermogravimetric analysis. Mechanical properties and water‐retention properties were measured. The best values of the tensile strength and breaking elongation of blend fibers were obtained when gelatin content was 30 wt %. The water‐retention values of blend fibers increase as the amount of gelatin is raised. The structural analysis indicated that there was strong interaction and good miscibility between alginate and gelatin molecules resulted from intermolecular hydrogen bonds. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1625–1629, 2005  相似文献   

18.
The copolyimide (co‐PI) fibers with outstanding mechanical properties were prepared by a two‐step wet‐spinning method, derived from the design of combining 4,4′‐oxydianiline (ODA) with the rigid 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)/p‐phenylenediamine (p‐PDA) backbone. The mechanical properties of PI fibers were drastically improved with the optimum tensile strength of 2.53 GPa at a p‐PDA/ODA molar ratio of 5/5, which was approximately 3.7 times the tensile strength of BPDA/p‐PDA PI fibers. Two‐dimensional wide‐angle X‐ray diffraction indicated that the highly oriented structures were formed in the fibers. Two‐dimensional small‐angle X‐ray scattering revealed the existence of the needle‐shaped microvoids aligned parallel to the fiber axis, and the introduction of ODA led to the reduction in the size of the microvoids. As a result, the significantly improved mechanical properties of PI fibers were mainly attributed to the gradually formed homogeneous structures. The co‐PI fibers also exhibited excellent thermal stabilities of up to 563°C in nitrogen and 536°C in air for a 5% weight loss and glass transition temperatures above 279°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42474.  相似文献   

19.
High-performance melamine formaldehyde (MF) fibers are successfully produced by innovatively utilizing dry spinning with high efficiency and low emission. Three ways are adopted to enhance the mechanical performance of MF fiber. First, MF resin is modified by introducing flexible chain segments into MF three-dimensional network and reducing the network crosslink density. Second, the energy dissipation capacity of the MF fibers is improved through constructing of hydrogen bond networks among modified MF resin, nano-SiO2, and/or polyvinyl alcohol and forming interpenetrating network structures of modified MF resin and nano-SiO2. Third, homogeneous and stable spinning solutions without phase separation are prepared, which can reduce interior defects of MF fibers. The chemical changes in the spinning solutions with increasing temperature and the rheology behavior of the solutions are investigated. In addition, the effects of fiber compositions on microstructure, morphology, and the properties of the MF fibers are also systematically studied. The prepared MF fibers possess high fire retardancy (i.e., limiting oxygen index >40%), thermal stability (i.e., Tmax >360°C), and mechanical properties (i.e., tensile strength >2.5 cN/dtex).  相似文献   

20.
The incorporation of carbon nanotubes to thermoplastic fibers can potentially improve mechanical, thermal and electrical properties. In this article, a methodology to tailor the mechanical properties of carbon nanotube/nylon fibers is presented. Multiwalled nanotubes (MWNT) were combined to polyamide 12 through melt compounding and twin‐screw extrusion. Pellets containing between 0 and 5.0 wt % MWNT were extruded and subsequently melt spun with a capillary rheometer to produce filaments. To further promote the alignment of the polymer chains and MWNTs, postdrawing parameters were systematically investigated: temperature, drawing speed and elongation. The best improvements in terms of elastic modulus and yield strength were measured at 140°C and 500% elongation, whereas drawing speed was shown to have a negligible effect. It was confirmed through electron microscopy and X‐ray diffraction that these enhancements were mainly induced by the alignment of the polymer chains along the fibers' axis. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4375–4382, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号