首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
A kind of adsorbent for metal ions, cotton fiber coated by high loading of chitosan (SCCH) was prepared. Its structure was characterized by elemental analysis, scanning electronic microscopy (SEM), Fourier transform infrared spectrum (FTIR), and wide‐angle X‐ray diffraction (WAXD). The adsorption properties of SCCH for Cu2+, Ni2+, Pb2+, Cd2+, such as saturated adsorption capacities, static kinetics, and isotherm were investigated. The adsorption for Ni2+, Pb2+, and Cd2+ was controlled by liquid film diffusion, but by particle diffusion for Cu2+. The adsorption process for Cu2+, Ni2+, Cd2+ could be described with Langmuir or Freundlich equation, but only with Freundlich equation for Pb2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
In this study, the graft copolymerization of methacrylic acid onto the biomass of baker's yeast was carried out in aqueous medium using potassium persulfate (PPS) as initiator. The poly (methacrylic acid) modified biomass obtained was characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS) and microscopic analyses. The number of functional groups was determined by potentiometric titration. The adsorption capacity of the modified biomass for Pb2+, Cd2+ and Cu2+ showed a significant increase compared with the pristine biomass, due to the presence of a large number of functional groups. According to the Langmuir equation, the maximum uptake capacities (qm) for Pb2+, Cd2+ and Cu2+ were 243.9, 108.7 and 73.5 mg g?1, respectively. Adsorption kinetics study showed that completion of the adsorption process needed only 30 min. The loaded biosorbent was regenerated using EDTA solution and used repeatedly three times with little loss of uptake capacity. Good results were obtained when the modified biomass was used to treat simulated wastewater containing Pb2+, Cd2+ and Cu2+. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
Yan-Hui Li  Jun Ding  Zechao Di  Cailu Xu  Bingqing Wei 《Carbon》2003,41(14):2787-2792
The individual and competitive adsorption capacities of Pb2+, Cu2+ and Cd2+ by nitric acid treated multiwalled carbon nanotubes (CNTs) were studied. The maximum sorption capacities calculated by applying the Langmuir equation to single ion adsorption isotherms were 97.08 mg/g for Pb2+, 24.49 mg/g for Cu2+ and 10.86 mg/g for Cd2+ at an equilibrium concentration of 10 mg/l. The competitive adsorption studies showed that the affinity order of three metal ions adsorbed by CNTs is Pb2+>Cu2+>Cd2+. The Langmuir adsorption model can represent experimental data of Pb2+ and Cu2+ well, but does not provide a good fit for Cd2+ adsorption data. The effects of solution pH, ionic strength and CNT dosage on the competitive adsorption of Pb2+, Cu2+ and Cd2+ ions were investigated. The comparison of CNTs with other adsorbents suggests that CNTs have great potential applications in environmental protection regardless of their higher cost at present.  相似文献   

4.
This work investigates the removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent under both batchwise and fixed‐bed conditions. It was found that modification of the tururi fibers with sodium hydroxide increased the adsorption efficiencies of all metal ions studied. The fractional factorial design showed that pH, adsorbent mass, agitation rate, and initial metal concentration influenced each metal adsorption differently. The kinetics showed that multi‐element adsorption equilibria were reached after 15 min following pseudo‐second‐order kinetics. The Langmuir, Freundlich, and Redlich–Peterson models were used to evaluate the adsorption capacities by tururi fibers. The Langmuir model was found to be suitable for all metal ions. Breakthrough curves revealed that saturation of the bed was reached in 160.0 mL with Cd2+ and Cu2+, and 52.0 mL with Ni2+ and Pb2+. The Thomas model was applied to the experimental data of breakthrough curves and represented the data well. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40883.  相似文献   

5.
Poly(acrylamide‐co‐maleic acid) [P(AAm/MA)] hydrogels, with various compositions, were prepared from ternary mixtures of acrylamide (AAm)/maleic acid (MA)/water by using 60Co γ‐rays. The effect of composition of these hydrogels, on the competitive removal of Pb2+, Cd2+, and Zn2+ ions from aqueous solution, was investigated. The hydrogel compositions and their adsorption behaviors were determined by use of differential pulse polarography, a very sensitive electroanalytical technique. It was observed that the external stimuli of pH, temperature, and ionic strength have an important role on the adsorption. The increments of MA content in P(AAm/MA) hydrogels caused a significant increase in the adsorption these ions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2401–2406, 2004  相似文献   

6.
《分离科学与技术》2012,47(14):2963-2986
Abstract

For the functional enhancement of chelating resins containing carboxylic acids, copolymer beads were prepared by suspension polymerization of styrene (St), methyl methacrylate (MMA), and divinylbenzene (DVB) in the presence of toluene as diluent. The phenyl rings of the beads were directly chloromethylated, and the carboxylic ester groups of the beads were converted into hydroxymethyl groups by reduction followed by chlorination to give chloromethyl groups, respectively. The chelating resins containing a pair of neighboring carboxylic acid groups (NCAGs) were obtained by the alkylation of chloromethyl groups in copolymer beads with diethyl malonate in the presence of sodium hydride followed by hydrolysis using aqueous alkali solution. Accordingly, the structural effects of the resins on the adsorption of heavy metal ions were investigated. Poly(St‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, and Cu2+, whereas poly(MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Cu2+, Cd2+, and Co2+. On the other hand, poly(St‐co‐MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, Hg2+, Co2+, and Cu2+: a synergistic effect on the adsorption of heavy metal ions like Pb2+, Cd2+, Hg2+, and Co2+ was observed. The adsorption ability of poly(St‐co‐MMA‐co‐DVB)‐based chelating resin among three kinds of chelating resins was relatively good.  相似文献   

7.
BACKGROUND: In this study, poly[(N‐vinylimidazole)‐co‐(maleic acid)] (poly(VIm/MA)) hydrogels were prepared by γ‐irradiation of ternary mixtures of N‐vinylimidazole–maleic acid–water using a 60Co γ‐source. Spectroscopic and thermal analyses of these hydrogels as a function of protonation showed that the results are consistent with the existence of an H‐bridged complex when the imidazole rings are partially protonated. Finally, the efficiency and binding trends of Cu2+, Co2+, Cd2+ and Pb2+ ions with both protonated and unprotonated poly(VIm/MA) hydrogels were determined. RESULTS: Gelation of 90% was reached at around 180 kGy dose at the end of irradiation. The poly(VIm/MA) hydrogels synthesized were further protonated in HCl solutions with different concentrations. Hydrogels originally showed 450% volumetric swelling; this ratio reached 1900% after protonation at pH = 5.0. Fourier transform infrared spectral changes in the +N? H stretching region (3200–3600 and 1173 cm?1) and the ring mode deformation at 915 cm?1 are consistent with the formation of an H‐bridged complex between the protonated and unprotonated imidazole rings upon partial protonation. Similar changes were obtained from NMR spectra of both the protonated and unprotonated forms of the hydrogels. CONCLUSION: Protonated and unprotonated hydrogels have been used in heavy metal ion adsorption studies for environmental purposes. Adsorption decreased with decreasing pH value due to the protonation of the VIm ring. The adsorption of Me2+ ions decreased in the order Cu2+ > Co2+ > Cd2+ > Pb2+, which is related to the complexation stability as well as the ionic radius of the metal ions. These results show that P(VIm/MA) hydrogels can be used efficiently to remove heavy metal ions from aqueous solutions. However, the protonated form is a bad choice for heavy metal ion adsorption due to electrostatic repulsion forces; it can nevertheless be assumed to be a good choice for anion adsorption from environmental waste water systems. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
Peanut skin, when treated with formaldehyde to polymerize tannins, is a highly efficient substrate for removal of many heavy metal ions from aqueous waste solutions. The ions Ag1+, Cd2+, Cr6+, Cu2+, Hg2+, Ni2+, Pb2+, Zn2+, as well as Ca2+ and Mg2+, were contacted with formaldehyde-treated peanut skin. Quantitative removal could be achieved with Ag1+, Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+. Capacity of the substrate for ions was promising for Pb2+ (2.1 meq/g substrate), Cu2+ (3.0 meq/g), and Cd2+ (1.3 meq/g). Sorption from a solution containing Cd2+, Cu2+, Hg2+, Ni2+, Pb2+, Zn2+, on a packed column of formaldehyde-treated peanut skin indicated that Hg2+, Pb2+, and Cu2+ were rapidly and completely bound to the packing, while Cd2+, Ni2+, and Zn2+ were poorly bound until the preferred ions had been removed from solution.  相似文献   

9.
Single and binary metal systems were employed to investigate the removal characteristics of Pb2+, Cu2+, Cd2+, and Zn2+ by Chlorella sp. HA-1 that were isolated from a CO2 fixation process. Adsorption test of single metal systems showed that the maximum metal uptakes were 0.767 mmol Pb2+, 0.450 mmol Cd2+, 0.334 mmol Cu2+ and 0.389 mmol Zn2+ per gram of dry cell. In the binary metal systems, the metal ions on Chlorella sp. HA-1 were adsorbed selectively according to their adsorption characteristics. Pb2+ ions significantly inhibited the adsorption of Cu2+, Zn2+, and Cd2+ ions, while Cu2+ ions decreased remarkably the metal uptake of Cd2+ and Zn2+ ions. The relative adsorption between Cd2+ and Zn2+ ions was reduced similarly by the presence of the other metal ions.  相似文献   

10.
《分离科学与技术》2012,47(2):277-287
Competitive adsorption of Ag+, Pb2+, Ni2+, and Cd2 ions on vermiuculite in a binary, ternary, and quaternary mixture was investigated in batch experiments. The effects of the presence of Ag+, Ni2+, and Cd2+ ions on the adsorption of Pb2+ ions were investigated in terms of the equilibrium isotherm. Experimental results indicated that Pb2+ ions always favorably adsorbed on vermiculite over Ag+, Ni2+, and Cd2+ ions. The adsorption equilibrium data of Pb2+ ions better fitted the Langmuir model than the Freundlich model. The results showed that the pseudo-second-order kinetics model was in good agreement with the experimental results for all metal ions, and the adsorption rate among the metal ions followed Ag+ > Pb2+ > Ni2+ > Cd2+. The desorption and regenration study indicated that vermiculite can be used repeatedly and be suitable for the design of a continuous process.  相似文献   

11.
A novel chitosan‐based adsorbent (CCTE) was synthesized by the reaction between epichlorohydrin O‐cross‐linked chitosan and EDTA dianhydride under microwave irradiation (MW). The chemical structure of this new polymer was characterized by infrared spectra analysis, thermogravimetric analysis, and X‐ray diffraction analysis. The results were in agreement with the expectations. The static adsorption properties of the polymer for Pb2+, Cu2+, Cd2+, Ni2+, and Co2+ were investigated. Experimental results demonstrated that the CCTE had higher adsorption capacity for the same metal ion than the parent chitosan and cross‐linked chitosan. In particular, the adsorption capacities for Pb2+ and Cd2+ were 1.28 mmol/g and 1.29 mmol/g, respectively, in contrast to only 0.372 mmol/g for Pb2+ and 0.503 mmol/g for Cd2+ on chitosan. Kinetic experiments indicated that the adsorption of CCTE for the above metal ions achieved the equilibrium within 4 h. The desorption efficiencies of the metal ions on CCTE were over 93%. Therefore, CCTE is an effective adsorbent for the removal and recovery of heavy metal ions from industrial waste solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Experimental studies on the retention of cadmium (Cd2+), copper (Cu2+), nickel (Ni2+), and lead (Pb2+) by bentonite samples from Iran were conducted using single- and multiple-component solutions. Based on the sorption capacity of bentonite the following order was obtained for single- and multiple-component solutions: Pb2+ > Cd2+ > Ni2+ > Cu2+. The maximum adsorption capacities of bentonite with metals in single- and multiple-component solutions were 29.5%, 22.5%, 19.2%, and 17.1% and 13.5%, 13.4%, 12.1%, and 9.1% for Pb2+, Cd2+, Ni2+, and Cu2+, respectively. Desorption isotherms of Cd2+, Cu2+, Ni2+, and Pb2+ deviated significantly from the sorption isotherms, thereby indicating irreversible or very slowly reversible sorption. Finally, soil solution saturation indices and metal speciation were assessed using the Visual MINTEQ 2.6 program and the probability of mineral precipitation was supported by scanning electron microscopy.  相似文献   

13.
A novel chelating resin polystyrene‐supported glucosamine was prepared by the reaction of chloromethylated polystyrene with glucosamine hydrochlorate, using anhydrous potassium carbonate as catalyst and dimethylformamide as solvent. Infrared spectra and elementary analysis were used to confirm its structure. The adsorption of the resin for Cu2+, Ni2+, Hg2+, Co2+, Cd2+, and Pb2+ was investigated, as well as various factors affecting the adsorption such as time, temperature, ion concentration, and pH. The results showed that the resin had good adsorption capacities for Cu2+, Ni2+, and Hg2+. The adsorption was controlled by liquid film diffusion and adsorption isothermal data could be well interpreted by the Freundlich equation. Values of adsorption activation energy and adsorption Gibbs free energy were calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 890–896, 2005  相似文献   

14.
Langmuir monolayers containing surface carboxylic acid head groups were examined in order to characterize their selectivity to metal ion adsorption. Experimental data of ion adsorption obtained by surface isotherms and FTIR spectroscopy were analyzed using a thermodynamic-and-electrochemical model. Among bivalent ions examined (Cr2+, Pb2+, Cu2+, Cd2+, Zn2+, Ca2+, Ni2+, and Ba2+), Langmuir monolayers showed the highest selectivity to chromium ions. In addition, it was found that adsorption constants of the surface ions are quite different from binding constants of the bulk ions. The results show important implications to sensing and separating metal ions by the use of acidic supramolecular materials.  相似文献   

15.
N‐methacryloyl‐(L )‐alanine (MALA) was synthesized by using methacryloyl chloride and alanine as a metal‐complexing ligand or comonomer. Spherical beads with an average diameter of 150–200 μm were obtained by suspension polymerization of MALA and 2‐hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Poly(HEMA–MALA) beads were characterized by SEM, swelling studies, surface area measurement, and elemental analysis. Poly(HEMA–MALA) beads have a specific surface area of 68.5 m2/g. Poly(HEMA–MALA) beads with a swelling ratio of 63%, and containing 247 μmol MALA/g were used in the removal of Hg2+ from aqueous solutions. Adsorption equilibrium was achieved in about 60 min. The adsorption of Hg2+ ions onto PHEMA beads was negligible (0.3 mg/g). The MALA incorporation into the polymer structure significantly increased the mercury adsorption capacity (168 mg/g). Adsorption capacity of MALA containing beads increased significantly with pH. The adsorption of Hg2+ ions increased with increasing pH and reached a plateau value at around pH 5.0. Competitive heavy metal adsorption from aqueous solutions containing Cd2+, Cu2+, Pb2+, and Hg2+ was also investigated. The adsorption capacities are 44.5 mg/g for Hg2+, 6.4 mg/g for Cd2+, 2.9 mg/g for Pb2+, and 2.0 mg/g for Cu2+ ions. These results may be considered as an indication of higher specificity of the poly(HEMA–MALA) beads for the Hg2+ comparing to other ions. Consecutive adsorption and elution operations showed the feasibility of repeated use for poly(HEMA–MALA) chelating beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1222–1228, 2006  相似文献   

16.
The chelating polymer-bearing triazolylazophenol moiety as the functional group was synthesized, its metal adsorption properties for 6 divalent heavy metal ions; Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were investigated. The capacity of the polymer for Cu2+ achieved 8.7 mEq/g in pH 5.3 solution. The polymer showed remarkable color changes from orange to red violet or blue violet with its chelations to the heavy metal ions. The metal adsorption rates of the polymer were rapid in performing complete capacity saturation of heavy metal ions in about 30 min. The capacities varied little the presence of alkali or alkaline earth metal ions in solutions. The perfect elimination of metals from the polymer–M2+ chelates were performed with mineral acid solutions. The metal ions; Cu2+ and Ni2+ in plating-process solutions were effectively removed by the chelating polymer, and the polymer can be practically used for the removal of these ions from waste water.  相似文献   

17.
Reusability and selective adsorption toward Pb2+ with the coexistence of Cd2+, Co2+, Cu2+ and Ni2+ ions on chitosan/P(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic acid) [CS/P(AMPS-co-AA)] hydrogel, a multi-functionalized adsorbent containing –NH2, –OH, –COOH and –SO3H groups was studied. The CS/P(AMPS-co-AA) was prepared in aqueous solution by a simple one-step procedure using glow discharge electrolysis plasma technique. The reusability of adsorbent in HNO3, EDTA-2Na and EDTA-4Na was investigated in detail. The competitive adsorption of the metal ions at the initial stage was compared between their equal mass concentration and equal molar concentration. In addition, the adsorption mechanism of the adsorbent for adsorption of Pb2+ was also analyzed by XPS. The results showed that the optimum pH of adsorption was 4.8, and time of adsorption equilibrium was about 180 min. Adsorption kinetics fitted well in the pseudo second-order model. The equilibrium adsorption capacities of Pb2+, Cd2+, Co2+, Cu2+, and Ni2+ at pH 4.8 were obtained as 673.3, 358.3, 176.7, 235.0 and 171.7 mg g?1, in their given order. The adsorbent displayed an excellent reusability using 0.015 mol L?1 EDTA-4Na solution as the eluent, and the desorption ratio could not correctly reflect the true characteristics of adsorption/desorption process. Moreover, the adsorbent showed good adsorption selectivity for Pb2+. The molar adsorption capacity at the initial stage with equal molar concentration was more reliable than the mass adsorption capacity during the study of selective adsorption. According to the XPS results, the adsorption of Pb2+ ions by the CS/P(AMPS-co-AA) absorbent could be attributed to the coordination between N atom and Pb2+ and ion-exchange between Na+ and Pb2+.  相似文献   

18.
ABSTRACT

This study deals with investigation of selectivity of p-morpholino-methylcalix[4]arene appended silica from a group of metal ions having similar charge and radii. The values of distribution ratio revealed that modified silica possess higher selectivity for Cu2+. In addition, relative selectivity coefficients of modified silica were found to be 24.1, 13.8, 8.6 and 4.01 for Cu2+/Ni2+, Cu2+/Co2+, Cu2+/Cd2+, Cu2+/Pb2+, respectively. The maximum adsorption capacity was 1.5 mmolg?1. The reusability data suggested no any loss of adsorption capacity of this material up to 10 cycles. The developed material was also applied for determination of copper in lake water samples with satisfactory results.  相似文献   

19.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

20.
The aim of this study was to investigate the heavy metal adsorption performance of supermacroporous poly(hydroxyethyl methacrylate) [PHEMA] cryogel. The PHEMA cryogel was produced by cryo‐polymerization. The PHEMA cryogel was characterized by scanning electron microscopy (SEM). The PHEMA cryogel containing 385 μmol Reactive Green HE‐4BD/g were used in the adsorption studies. Adsorption capacity of the PHEMA cryogel for the metal ions, i.e., Cu2+, Cd2+, and Pb2+ were investigated in aqueous media containing different amounts of the ions (5–600 mg/L) and at different pH values (3.2–6.9). The maximum adsorption capacities of the PHEMA cryogel were 11.6 mg/g (56 μmol/g) for Pb2+, 24.5 mg/g (385 μmol/g) for Cu2+ and 29.1 mg/g (256 μmol/g) for Cd2+. The competitive adsorption capacities were 10.9 mg/g (52 μmol/g) for Pb2+, 22.1 mg/g for Cd2+ (196 μmol/g) and 23.2 mg/g (365 μmol/g) for Cu2+. The PHEMA/Reactive Green HE‐4BD cryogel exhibited the following metal ion affinity sequence on molar basis: Cu2+ > Cd2+ > Pb2+. The PHEMA/Reactive Green HE‐4BD cryogel can be easily regenerated by 50 mM EDTA with higher effectiveness. These features make the PHEMA/Reactive Green HE‐4BD cryogel a potential adsorbent for heavy metal removal. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号