共查询到17条相似文献,搜索用时 0 毫秒
1.
为揭示通过熔融沉积成型(FDM)工艺制备的热塑性聚氨酯弹性体(TPU)的静动态力学性能及工艺参数对其力学性能的影响,采用万能材料试验机和分离式霍普金森压杆(SHPB)实验装置对使用3种打印速率(10、40、70 mm/s)和3种喷头温度(200、220、240 ℃)制备的TPU开展准静态(0.01 s-1)和动态(1 000 s-1)加载下的力学性能试验,并进行工艺参数优选,同时进一步获取了材料在较宽应变率范围(0.001~2 500 s-1)的应力?应变样本空间数据。结果表明,准静态和动态加载下,喷头温度220 ℃、打印速率40 mm/s为最优工艺参数;试样在准静态和动态下均具有应变率效应;准静态下试样超弹性特征显著,动态下结合朱?王?唐(ZWT)方程构建的材料黏弹性本构模型拟合曲线与实验曲线吻合较好;采用最优工艺参数制备的试样出现明显“微相分离”现象。 相似文献
2.
3.
The article reports an investigation of the effect of a hydrocarbon resin, Necirés TR100, on the structure, morphology, and properties of two isotactic polypropylene/clay composites. The clays are Dellite HPS, a purified montmorillonite, and Dellite 67G, a purified and modified montmorillonite with a high content of quaternary ammonium salt. Necirés TR100 contains hydroxyl and acid groups, which were expected to interact during the melt mixing with the polar surface of the clays to have intercalation with Dellite HPS and/or exfoliation of Dellite 67G, which is already intercalated by the quaternary ammonium salt. The morphological results indicate that the composite isotactic polypropylene/Dellite HPS presents large and coarse clay domains, whereas the composite isotactic polypropylene/Dellite 67G presents a better distribution of the clay clusters, although the presence of some clay domains of a few μm are also detected. Although results from Wide Angle X‐ray Diffraction have indicated that Necirés TR100 has no effect on the layers distance of Dellite HPS and Dellite 67G its addition produces composites with clay particles homogenously distributed in the polyolefin matrix, better tensile properties (higher values of Young's modululs and elongation to break) and decrease of permeability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
Quasi‐static and dynamic compressive properties of three soybean oil‐based polymeric materials, which were made through the reaction of epoxidized soybean oil with diamine compounds, have been determined. Quasi‐static properties were determined with an MTS 810 hydraulically driven testing machine, whereas dynamic experiments were conducted with a split Hopkinson pressure bar (SHPB) modified for low‐impedance material testing. All three materials were capable of deforming to very large strains, with significant nonlinear stress–strain response. Their compressive behaviors were strain‐rate sensitive with distinctive rate sensitivities. On the basis of the experimental results at various strain rates, a compressive one‐dimensional stress–strain material model with strain‐rate effects was developed to describe the experimental results for all three materials under both quasi‐static and dynamic loading conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 2006 相似文献
5.
Thermal,mechanical, and corrosion resistance properties of vinyl ester/clay nanocomposites for the matrix of carbon fiber‐reinforced composites exposed to electron beam 下载免费PDF全文
Seyed Mohammad Razavi Negar Dehghanpour Seyed Javad Ahmadi Mahdi Rajabi Hamaneh 《应用聚合物科学杂志》2015,132(33)
Vinyl ester/clay nanocomposites with 1, 3, and 5% nanoclay contents were prepared. X‐ray diffractography patterns and Scanning Electron micrographs showed that nanocomposites with the exfoliated structure were formed. Thermogravimetric analysis, water absorption test, and Tafel polarization method, respectively, revealed the improvements in thermal resistance, water barrier properties, and corrosion resistance properties of the samples with an increase in the amount of the incorporated nanoclay. Tensile tests showed that nanoclay also enhanced the mechanical properties of the polymer, so that the tensile strength of the samples with 5% nanoclay was more than 3 times higher than tensile strength of pure vinyl ester samples. Overall, the best properties were observed for the samples containing 5% nanoclay. Pure vinyl ester and nanocomposite with 5% nanoclay content were exposed to the electron beam radiation and their mechanical properties improved up to 500 kGy irradiation dose. Finally, pure vinyl ester and vinyl ester/nanoclay (5%) matrixes were reinforced with carbon fiber and the effect of electron beam irradiation on their mechanical properties was examined. The tensile strength and the modulus of the samples initially increased after exposure to the radiation doses up to 500 kGy and then a decrease was observed as the irradiation dose rose to 1000 kGy. Moreover, nanoclay moderated the effect of the irradiation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42393. 相似文献
6.
《Ceramics International》2017,43(14):10763-10769
A kind of dry mixing and pressing process was introduced to prepare expanded graphite/carbon fiber cement composites (EG-CFRC). Significant effect of moisture on the thermoelectric properties of EG-CFRC was observed. The higher the moisture content is, the greater the absolute Seebeck coefficient. The maximum of absolute Seebeck coefficient 11.59 μV/°C was obtained with moisture of 14.98% at 33 °C. Simultaneously, the maximum of electrical conductivity 0.78 S cm−1 was got with moisture of 11.44%. Furthermore, the largest power factor 7.85×10−4 µW m−1 K−2 was calculated at 33 °C with moisture of 11.44%. The carrier scattering, polarization effects and high density defects interface of EG-CFRC are attributed to the enhancement of thermoelectric properties in the case of higher moisture content. 相似文献
7.
《Journal of the European Ceramic Society》2022,42(5):2400-2407
This study examines the effect of temperature on the dynamic compressive performance of random fibrous (RF) composites at temperatures up to 1273 K in the through-the-thickness (TTT) and the in-plane (IP) directions, using an improved high-temperature split Hopkinson pressure bar (SHPB) system. The results revealed that in the IP direction, the RF composite presented a shear fracture mode below 1073 K and initiated multiple major cracks in the specimens at 1273 K. However, the composite showed a layered fracture mode in the TTT direction from 288 to 1273 K. The dynamic strength in both directions showed a consistent trend when observed under static loading below the critical temperature. The change in the strain-rate sensitivity (SRS) of the dynamic strength was insignificant for temperatures below the transition temperature of viscous-flow and brittle deformation of the RF composite. However, above the transition temperature, the SRS of the dynamic strength became significant. 相似文献
8.
In order to apply carbon/carbon composites (C/Cs) to various hot structures, secondary bonding techniques effective at elevated temperatures are frequently required. In the present study, carbon bonding between lamination type C/Cs was formed by the carbonation of polymer adhesive, and the strength of the bonding was evaluated at temperatures up to 2273 K in a vacuum using the double-notched shear method. The results revealed that bonding strength increased with increasing temperature and became higher than the inter-laminar shear strength of the substrate C/C when the bonding layer was thin. The enhancement of carbon bonding strength with increasing temperature was shown to be caused mainly by the evaporation of absorbed gases, probably water, up to temperatures of 1800 K with a slight additional contribution of thermal residual stress. It was also shown that heat treatment at higher temperatures made the bonding stronger. 相似文献
9.
Yanqin Fu Yulei Zhang Tao Li Jian Zhang 《Journal of the American Ceramic Society》2020,103(2):1304-1311
One-dimensional (1D) hafnium carbide nanowires (HfCnws) were grown in situ on carbon fibers (CFs) via a Ni-assisted pyrolysis method of organometallic polymer precursor. Scanning electron microscopy (SEM), transmission electron microscope (TEM), polarized-light optical microscopy (PLM), and Raman were used to analyze the effect of HfCnws on the microstructure of pyrolytic carbon (PyC). The specific heat capacity (HC), thermal diffusivity (TD), thermal conductivity (TC), and coefficient of thermal expansion (CTE) of HfCnws-C/C composites were also investigated. Results show that HfCnws wrapped by carbon nanosheet were successfully synthesized. The diameter of HfCnws is about 30 nm and the thickness of carbon nanosheet is about 10 nm, which could induce the formation of isotropic (ISO) PyC. After introducing HfCnws, the TD and CTE of HfCnws-C/C composites were increased. Ni2HfCnws-C/C composites show a higher TC and TD, and the CTE increased with the increasing content of HfCnws. 相似文献
10.
Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures 下载免费PDF全文
Dong Xiang Lei Wang Yuhao Tang Chunxia Zhao Eileen Harkin‐Jones Yuntao Li 《Polymer International》2018,67(2):227-235
Multi‐walled carbon nanotube (MWCNT)‐ and graphene nanoplatelet (GNP)‐filled high‐density polyethylene (HDPE) composites with dispersed and segregated network structures were prepared by solution‐assisted mixing. Simultaneous DC conductivity and differential scanning calorimetry were used to measure electrical conductivity during composite thermal phase transitions. It was found that the conductive network is deformed during melting and rebuilt again during annealing due to the re‐agglomeration of nanofillers. The rebuilding of the structure is significantly affected by the original network structure and by the shape and loading of the nanofillers. Both deformation and reorganization of the network lead to drastic changes in the conductivity of the composites. The crystallization process also affects the conductive network to some extent and the subsequent volume shrinkage of the polymeric matrix after crystallization results in a further decrease in the resistivity of HDPE/GNP composites. Classical electrical percolation theory combined with a kinetic equation is used to describe the conductivity recovery of composites during annealing, and the results are found to be in good agreement with experimental data. © 2017 Society of Chemical Industry 相似文献
11.
Song Tian Yulei Zhang Lu Zhou Shilin Huang Junjie Ren Jincui Ren Shouyang Zhang Hejun Li 《Journal of the European Ceramic Society》2021,41(1):73-83
HfC nanowires modified carbon fiber cloth laminated carbon/carbon (HfCnw-C/C) composites were fabricated by in situ growth of HfC nanowires on carbon cloths via catalytic CVD, followed with lamination of the cloths and densification by pyrolytic carbon (PyC). Morphologies, thermal conductivity, coefficient of thermal expansion (CTE), and ablation resistance of the composites were investigated. Due to the loading of HfC nanowires, the matrix PyC with low texture was obtained; the thermal conductivity of the composites in the Z direction was enhanced from 100℃ to 2500℃; CTE along the X–Y direction also decreased in the range of 2060 ℃ – 2500 ℃, which reaches the maximum of 24 % at 2500℃. Moreover, the 20s-ablation-resistance of HfCnw-C/C composites exhibits mass and linear ablation rates of 5.3 mg/s and 21.0 μm/s, which are 40 % and 37 % lower than those of pure C/C composites, respectively. Our work shows laminated HfCnw-C/C composites are a promising candidate for high-temperature applications. 相似文献
12.
《Ceramics International》2017,43(2):1722-1730
To protect carbon/carbon composites (C/Cs) against oxidation, SiC coating toughened by SiC nanowires (SiCNWs) and carbon nanotubes (CNTs) hybrid nano-reinforcements was prepared on C/Cs by a two-step technique involving electrophoretic co-deposition and reactive melt infiltration. Co-deposited SiCNWs and CNTs with different shapes including straight-line, fusiform, curved and bamboo dispersed uniformly on the surface of C/Cs forming three-dimensional networks, which efficiently refined the SiC grains and meanwhile suppressed the cracking deflection of the coating during the fabrication process. The presence of SiCNWs and CNTs contributed to the formation of continuous glass layer during oxidation, while toughed the coating by introducing toughing methods such as bridging effect, crack deflection and nanowire pull out. Results showed that after oxidation for 45 h at 1773 K, the weight loss percentage of SiC coated specimen was 1.35%, while the weight gain percentage of the SiCNWs/CNTs reinforced SiC coating was 0.03052% due to the formation of continuous glass layer. After being exposed for 100 h, the weight loss percentage of the SiCNWs/CNTs reinforced SiC coating was 1.08%, which is relatively low. 相似文献
13.
Weiming Chen Zhiqiang Tao Lin Fan Shiyong Yang Wenge Jiang Junfeng Wang Yanli Xiong 《应用聚合物科学杂志》2011,119(6):3162-3169
Poly(etherimide)s (PEIs) with different chemical structures were synthesized and characterized, which were employed to toughen epoxy resins (EP/PEI) and carbon fiber‐reinforced epoxy composites (CF/EP/PEI). Experimental results revealed that the introduction of the fluorinated groups and meta linkages could help to improve the melt processability of EP/PEI resins. The EP/PEI resins showed obviously improved mechanical properties including tensile strength of 89.2 MPa, elongation at break of 4.7% and flexural strength of 144.2 MPa, and good thermal properties including glass transition temperature (Tg) of 211°C and initial decomposition temperature (Td) of 366°C. Moreover, CF/EP/PEI‐1 and CF/EP/PEI‐4 composites showed significantly improved toughness with impact toughness of 13.8 and 15.5 J/cm2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
Hexagonal-shaped SiC nanowires were in situ formed in C/SiC composites with ferrocene as catalyst in the densification process of polymer impregnation and pyrolysis. The effect of SiC nanowires on microstructure and properties of the composites were studied. The results show that the in situ formed SiC nanowires were hexagonal, mostly with diamer of about 250 nm, and grew by the vapor–liquid–solid (VLS) mechanism. The C/SiC composite with nanowires shows higher bulk density and flexural strength than the one with no SiC nanowires, and the high temperature flexural strength behavior of C/SiC composites with SiC nanowires was evaluated. 相似文献
15.
Effect of precoated carbon layer on microstructure and anti‐erosion properties of SiC coating for 2D‐C/C composites 下载免费PDF全文
Wei Shi Yi Tan Jianjie Hao Jiayan Li 《International Journal of Applied Ceramic Technology》2018,15(3):592-601
To improve the erosion resistant of carbon‐carbon composites, an SiC coating was synthesized on carbon‐carbon composites by the in situ reaction method. They are firstly coated with carbon layer by slurry, and then SiC coatings are obtained by chemical vapor reaction. The effects of precoated carbon layer on the microstructure and anti‐erosion properties of SiC‐coated C‐C composites were studied and characterized. The thickness of the SiC coating increased with the increase in the precoated carbon layer thickness. The different thickness of carbon layer affects hardness of the SiC coatings, resulting in diverse erosion resistance of the coatings. The SiC coating prepared with moderate thickness of precoated carbon layer exhibits the best erosion resistance, and show better resistance at an impact angle of 30° than 90°. The eroded surface revealed that coating cracking and brittle fracture, fiber‐matrix debonding, fiber breakage, and material removal, and the additional microcutting and microploughing at oblique impact angle are the major erosion mechanism of SiC coating for C/C composites. 相似文献
16.
Mullite/glass/nano aluminum nitride (AlN) filler (1–10 wt% AlN) composites were successfully fabricated for the low-temperature co-fired ceramics applications that require densification temperatures lower than 950°C, high thermal conductivity to dissipate heat and thermal expansion coefficient matched to Si for reliability, and low dielectric constant for high signal transmission speed. Densification temperatures were ≤825°C for all composites due to the viscous sintering of the glass matrix. X-ray diffraction proved that AlN neither chemically reacted with other phases nor decomposed with temperature. The number of closed pores increased with the AlN content, which limited the property improvement expected. A dense mullite/glass/AlN (10 wt%) composite had a thermal expansion coefficient of 4.44 ppm/°C between 25 and 300°C, thermal conductivity of 1.76 W/m.K at 25°C, dielectric constant (loss) of 6.42 (0.0017) at 5 MHz, flexural strength of 88 MPa and elastic modulus of 82 GPa, that are comparable to the commercial low temperature co-fired ceramics products. 相似文献
17.
The influence of the electrocatalyst loading (2.0–40.7 wt.%) on a carbon support on its suitability as a cathode for proton-exchange membrane (PEM) fuel cells was evaluated at a constant membrane electrocatalyst loading of 0.15 mg/cm2. The results clearly demonstrate that different electrocatalyst loadings on a carbon support in the investigated range significantly affect not only the electrocatalyst activity but also the performance in H2/O2 fuel cells. Increasing the electrocatalyst loading on a carbon support led to an increase in the particle size of electrocatalyst and the pore size of the membrane electrode assembly (MEA) but a decrease in the particle size distribution and MEA thickness. The maximum oxygen-reduction reaction (ORR) activity and cell performance (745 mA/cm2 and 520 mW/cm2 at 0.6 V) were obtained at an electrocatalyst loading of 24.1 wt.% on a carbon support. 相似文献