首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of biodegradable polymers is an interesting way to reduce the polymeric waste accumulation in the environment. However, the addition of fillers to biodegradable polymer matrices may decrease their biodegradability. Glassy carbon (GC) is a promising carbon material that can be employed as a filler in the production of antistatic packaging utilized to protect electronic components. The use of a biodegradable polymeric matrix such as poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) can be an excellent alternative for the preparation of green composites to be used in these packages. This work aims to evaluate the effect of the GC addition and the GC particle size on the biodegradability of the PHBV matrix, as well as to study the result of the employment of a previous photodegradation treatment on the biodegradation in aqueous medium of PHBV/GC composites. Scanning electron microscopy, residual weight measurement (%) and surface roughness showed that GC does not interfere negatively with PHBV biodegradability. Differential scanning calorimetry analysis and residual weight measurement permitted to suggest that the increase in the crystallinity degree of PHBV and PHBV/GC samples occasioned by the ultraviolet radiation hindered the water and enzyme access to the bulk of the materials, decreasing the biodegradability.  相似文献   

2.
Environmental issues concerning petroleum‐based polymers have begun a growing emphasis to utilize sustainable poly(lactic acid) (PLA) based packaging. However, PLA has its own limitations such as brittleness, high gas permeabilities and slow crystallization rate. With the aim to alleviate these limitations, we made a maiden effort to use a food additive, sucrose palmitate (SP) as eco‐friendly filler for fabrication of PLA based bionanocomposites. FTIR analysis elucidated the presence of hydrogen bonding and intermolecular interaction between PLA and reinforcement. Ordered orientation of the SP in the PLA matrix visualized by TEM analysis revealed uniform dispersion of SP filler into PLA matrix. DSC and XRD results confirmed that the incorporated bio‐filler acted as a nucleating agent and thus partially contributed towards the crystallinity of PLA‐SP bionanocomposites. Enhancement in the tensile strength and elongation at break up to 83 and 56% respectively is obtained. The best positive influence for the oxygen barrier was confirmed for the PLA‐SP bionanocomposite film where the reduction in oxygen permeability by 69% is achieved in comparison to pure PLA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41320.  相似文献   

3.
Blending of poly (lactic acid) (PLA)/functionalized gum arabic (FG) in presence of dicumyl peroxide (DCP) presents a simple process to produce film using melt extrusion (recycle time ~ 4 min, screw speed ~60 rpm) at 180°C with tailored characteristics. The FTIR investigation shows that the confirmation of grafting of PLA chains on FG through formation of new C─C linkage. Properties of fabricated films such as morphological, mechanical, UV barrier and contact angle are examined to develop film with improved interfacial interaction, increased toughness, UV–C blocking effect (~95%) and hydrophobicity (~14%). Polarized optical microscopy (POM) studies reveal that PLA/1FG with and without DCP has more crystal density as compared to PLA at 120°C. This melt extrusion permits straightforward, feasible bionanocomposite film and has great potential as a modification with DCP assists to overcome particular drawbacks of FG.  相似文献   

4.
Starches used to develop biodegradable composites belong to different botanical sources that exhibit different microstructures and morphologies. This results in confused relationship and no comparison of data for applications. In this work, the most popular ten different starches were used as model materials to investigate the relationship between starch microstructure and the performance of poly(lactic acid) (PLA)/starch composites. It was found that: (a) composites filled with either well‐sized (small‐sized and non‐agglomerated) starch granules or those containing high amylose content (G‐50 and G‐80) improves the reinforcing ability of PLA, with least reduction in deformation; (b) aggregation tendency of small‐sized starch granules can be controlled using surface modification approach that not only reduces the phase‐separation between starch and PLA but also improves the dispersion; and (c) no discernible relationship exists between the starches, from different botanical sources, and the thermal performance of PLA/starch composites. The results provide practical guidelines to develop starch‐based biodegradable composites for commercial applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45504.  相似文献   

5.
Poly(glycerol sebacate) (PGS) is one of the new elastomers used for soft tissue engineering, while improving its limited mechanical strength is the biggest challenge. In this work, a novel biodegradable elastomer composite PGS/cellulose nanocrystals (CNCs) was prepared by solution‐casting method and the mechanical properties, sol–gel contents, crosslink density, and hydrophilic performance were characterized. The thermal and degradation properties of composites were also investigated. Results show that the addition of CNCs into PGS resulted a significant improvement in tensile strength and modulus, as well as the crosslink density and the hydrophilicity of PGS. When the CNCs loading reached 4 wt %, the tensile strength and modulus of the composite reached 1.5 MPa and 1.9 MPa, respectively, resulting 204% and 158% increase compared to the pure PGS. Prolonging the curing time also improved the strength of both the neat PGS and PGS/CNCs composites according to the association and shift of hydroxy peaks around 3480 cm?1. DSC results indicate that the addition of CNCs improved both the crystallization capacity and moving capability of PGS molecular chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42196.  相似文献   

6.
This work aims to study the possibility to process PLA/PBS/RH green composites into hexagonal plant-pots employing a large-scale industrial operation using injection molding. Green composites based on poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and rice husk (RH) with various RH contents (10–30%wt.) were produced successfully using a twin-screw extruder. The compatibility of RH-matrix was improved by chemical surface modifications using a coupling agent. RH was analyzed as an effective filler for PLA to develop green composites with low cost, high biodegradability, improved processability, and comparable mechanical properties as unfilled PLA. With increasing RH content, tensile modulus of the composites increased gradually. The addition of PBS, at PLA/PBS ratio of 60/40, improved the elongation at break and impact strength of PLARH30 by 55% and 7.1%, respectively. The suitable processing temperatures for PLA decreased from 220–230°C to 170–180°C when 30%wt. RH was composited into PLA matrix and were further reduced when PBS was applied. After biodegradation via either enzymatic degradation or hydrolysis, surface erosion with a large number of voids, mass loss, and the substantial decrease in tensile strength of all the composites were observed. In addition, the biodegradation of the composites has been improved by the addition of either RH or PBS.  相似文献   

7.
The most promising representative of biodegradable plastics in packaging applications is polylactide (PLA). Despite this, there is only a small market of PLA in Europe. Reasons for that are the high price of PLA raw material and the lack of knowledge of the behavior in packaging applications. It has a number of peculiarities so producers of plastics packaging hesitate to use it. Like other polyesters, it can degrade at increased temperatures in the presence of moisture by hydrolysis whereby it loses its physical and chemical properties. In all production processes, production waste is generated (i.e., stamping grids or edge trim). In most cases, this waste is used. It is not known in detail, how an internal recycling process will influence the final product properties. One problem is hydrolysis by which the production waste is partially degraded. Target of this study is to analyze the recycling process of PLA within the context of necessary process adaptions and the effects upon ecological efficiency. Films for packaging containing multiple types and amounts of production waste will be produced by extrusion and tested concerning their mechanical properties. The analysis of the recycling behavior showed that internal PLA production waste is well suitable for recycling. The influence of the recycling on the molecular weight is negligible. The effect on the viscosity and thus on the extrusion process is higher. Packaging relevant properties like mechanical or optical properties are hardly influenced. Especially recycling with a recycling quota of up to 50% has an insignificant effect on the film properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41532.  相似文献   

8.
This work developed biodegradable poly(butylene adipate-co-terephthalate)/polylactic acid (PBAT/PLA) composites with different fillers to improve their physicochemical properties and biodegradability. The films were tested considering mechanical, morphological, thermal, crystalline, biodegradability, and ecotoxicity tests. Mechanical and morphological results indicated that the fillers' nature influences mechanical performance; all composites showed high-tensile strength (~30 MPa) than the pristine films (~12 MPa). The use of both fillers resulted in an interface, improving the matrix compatibility, reflecting in good thermal performance, low-water absorption, and high hydrophobicity. The WA (water absorption) and hydrophobicity are essential to maintain the crop's moisture since the water lost through plant transpiration will be condensed and returned to the soil. Films showed biodegradability and absence of toxicity, which allows the substitution of polyethylene commodity films as mulching films. Biodegradation and ecotoxicity tests indicate that the developed films are beneficial for lettuce crops and contribute to the development of seedlings.  相似文献   

9.
Biodegradable counterparts of petro plastics for packaging applications are highly desired due to environmental considerations. Agar can be a potential material due to its availability and biodegradability. However, moderate mechanical strength and thermal stability, in addition to poor resistance against water, needs to be addressed before agar can be commercially implemented as packaging material. As a step toward this objective, graphene oxide (GO) and reduced GO (RGO) were incorporated in agar and were solution casted in the form of films. The tensile strength was increased by 118.4% and 69.4% at 2% GO and 2% RGO loading, respectively. Higher interfacial bonding between GO and agar compared to that of RGO and agar was attributed for the observed mechanical properties. Resistance to swelling and hydrophobicity (contact angle) of the composite were improved as well when compared to pure agar. The tensile strength and the contact angle values were however, decreased after the addition of 2% GO and 2% RGO. The morphological investigation showed that the formation of pores at higher concentration of reinforcement was the contributing factor for the decrease in tensile strength. No significant change in thermal properties was observed. The transmittance value was reduced to 0% after the incorporation of GO and RGO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45085.  相似文献   

10.
In the quest on improving composite formulations for environmental sustainability, maleic acid (MA) cross-linked poly(vinyl alcohol) (PVA)-α-chitin composites reinforced by oil palm empty fruit bunch fibers (OPEFB)-derived nanocellulose crystals (NCC) had been successfully prepared. Based on the Fourier transform infrared (FTIR) spectroscopic analysis, it was proven that molecular interactions of the cross-linker to the polymeric networks was through conjugated ester linkage. Differential scanning calorimetry (DSC) showed that the influence of MA was minimal toward crystallization in the PVA/chitin/NCC composite. Maximum tensile strength, elongation at break and Young's modulus of the respective PVA/chitin/NCC composites were achieved at different content of MA, dependent on the PVA/chitin mass ratio. Among all compositions, a maximum Young's modulus was achieved at 30 wt% MA loading in PVA/chitin-30/NCC, amounting to 2,413.81 ± 167.36 MPa. Moreover, the mechanical properties and selected physicochemical properties (swelling, gel content, and contact angle) of the PVA/chitin/NCC composites could be tailored by varying the chitin content (10–30 wt%) and MA content (10–50 wt% based on total mass of composite). In brief, this chemically cross-linked PVA-based biocomposites formulated with sustainable resources exhibited tunable physicochemical and mechanical properties.  相似文献   

11.
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends and PLA/PBAT/Al2O3 nanocomposites were fabricated via solution blending. The influence of PBAT and Al2O3 content on the thermal stability, flexural properties, impact strength, and morphology of both the PLA/PBAT blends and the PLA/PBAT/Al2O3 nanocomposites were investigated. The impact strength of the PLA/PBAT/Al2O3 nanocomposites containing 5 wt% PBAT increased from 4.3 to 5.2 kJ/m2 when the Al2O3 content increased from 0 to 1 wt%. This represents a 62% increase compared to the impact strength of pristine PLA and a 20% increase compared to the impact strength of PLA/PBAT blends containing 5 wt% PBAT. Scanning electron microscopy imaging revealed that the Al2O3 nanoparticles in the PLA/PBAT/Al2O3 nanocomposites function as a compatibilizer to improve the interfacial interaction between the PBAT and the PLA matrix.  相似文献   

12.
The reactive blends were prepared by the blending of poly(lactic acid) (PLA) with poly(butylene succinate) (PBS) in the presence of dicumyl peroxide (DCP) as a radical initiator in the melt state. The gel fractions, morphologies, crystallization behaviors, and rheological and mechanical properties of the reactive blends were investigated. Some crosslinked/branched structures were formed according to the rheological measurement and gel fraction results, and the crosslinked/branched structures played the role of nucleation site for the reactive blends. The PLA–PBS copolymers of the reactive blends acted as a compatibilizer for the PLA and PBS phases and, hence, improved the compatibility between the two components. Moreover, it was found that the reactive blends showed the most excellent mechanical properties as the DCP contents were 0.2 and 0.3 phr. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39580.  相似文献   

13.
In this study the composites which are commonly called NR/CB/Leather were developed in order to apply them as antistatic flooring and coating. They were developed using vulcanized natural rubber, carbon black to add an electric conduction property and industrial leather waste. The leather industrial waste was micronized and added to the rubber matrix in proportions of 60 and 80 phr using an opened mixing cylinder according to ASTM D 3182 standard. The composites were exposed to the sanitizing agents, (i) bleach and (ii) disinfectant, aiming to simulate a real cleaning context, and to meet the health standards of the Brazilian Ministry of health. Physical‐chemical and microbiological evaluations were carried out to determine the structural and chemical stabilities of the composites. After this, low water absorption level (<1.5%), immobilization and low chromium oxide level (<1.5), pH within the neutrality rate and an excellent resistance to microbiological contamination were identified for the composites. Thus, from a physical‐chemical perspective, the composites NR/CB/Leather displayed suitable properties and potential for application as antistatic flooring and coatings. Besides using leather industrial waste in their production, their manufacture can boost this industrial sector economically and, consequently, promote a reduction in environmental impact. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43618.  相似文献   

14.
The effects of gum tragacanth obtained from two species of Astragalus Gossypinus (GT-G) and A. Parrowianus (GT-P) at two levels of 10% and 30% combined with cellulose nanofibers (CNF; 5%) on the physico-mechanical and structural properties of polyvinyl alcohol (PVA) nanocomposite film were investigated in this study. The water solubility and water vapor permeability of the films decreased with increasing the content of both gums, especially in the film containing 30% GT-P. The highest values of the tensile strength (39.3 MPa) and elongation at break (445%) belonged to the treatment containing 10% GT-P (90/10P/0). The FTIR and DSC analyses confirmed good interactions between GT and PVA in the 90/10P/0 treatment. SEM images indicated the dense structure of this film as the optimum treatment. Although the presence of CNF in the films containing GT-G improved some properties, especially the Young modulus, it impaired all the functional properties of nanocomposite GT-P film.  相似文献   

15.
Maleated poly(lactic acid) (PLA-g-MA) was prepared through melt grafting of maleic anhydride onto a PLA backbone with the aid of a radical initiator. PLA-g-MA thus formed was incorporated into PLA/polyamide 11 (PA11) blends as a reactive compatibilizer. By morphological observation, it was assessed that PLA-g-MA lowered the interfacial energy and strengthened the interface between PLA and PA11. However, the compatibilized PLA/PA11 blends did not show significant improvement of impact strength compared with noncompatibilized PLA/PA11 blends. Measurements of the molecular weight and impact strength of PLAs compounded with various amounts of radical initiators revealed that decreased molecular weight of PLA by the radical initiator used for the preparation of PLA-g-MA is responsible for this unexpected result. To compensate the decrease of the molecular weight, a crosslinking agent was incorporated in the preparation step of PLA-g-MA. It was found that the crosslinking agent is effective in preventing the molecular weight reduction. As a result, the impact strength of the PLA/PA11 blend was enhanced to a great extent by the PLA-g-MA prepared with the crosslinking agent.  相似文献   

16.
An effective strategy to increase the properties of poly (lactic acid) (PLA) is the addition of carbon nanotubes (CNT). In this work, aiming to improve the surface adhesion of PLA and CNT a new compatibilizer agent was prepared by reactive processing, PLA grafted maleic anhydride (PLA-g-MA) using benzoyl peroxide and maleic anhydride. The effectiveness of the PLA-g-MA as a compatibilizer agent was verified for PLA/PLA-g-MA/CNT nanocomposites. PLA and PLA-g-MA samples were characterized by Fourier transform infrared spectroscopy (FT-IR) to confirm the grafting reaction of maleic anhydride on PLA chains and by rheological analysis to prove the changes in the matrix PLA after the graphitization reaction. Thermal (differential scanning calorimetry and thermogravimetric analysis), mechanical tests (Izod impact strength and tensile test), and morphological characterization were used to verify the effect of the compatibilizer agent. The preparation of PLA-g-MA by reactive extrusion processing proved satisfactory and the nanocomposites presented good thermal and mechanical properties. The addition of the PLA-g-MA also contributed to the greater distribution of CNT and can be used as an alternative for the production of PLA/CNT nanocomposites.  相似文献   

17.
The demand for biodegradable materials is on the rise because humanity is now more concerned about a sustainable lifestyle than ever before. In this regard, we present solution casting synthesized novel biopolymer blended films of poly(butylene succinate)/cyclic olefin copolymer (PBS/COC) for packaging applications. These films were characterized by X-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR), scanning electron microscopy (SEM), universal tensile testing (ASTM D882 standard), and antibacterial Disc diffusion tests using gram-negative Escherichia coli (E.coli) and gram-positive Staphylococcus aureus (S.aureus) bacteria. The XRD and FTIR revealed the type of bonding to be physical in-between the constituent polymers; ensuring the biodegradable nature of their blends, while the thickness of films was found to be <100 μm. The SEM, tensile, and antibacterial testing concluded that 30%PBS with 70%COC by weight blending is the best composition; showing a compact/pin-holes free morphology, the highest strength of 91 MPa, and contact inhibition with E.coli and S.aureus bacteria.  相似文献   

18.
α-Cellulose extracted from jute fiber was grafted with oligo( d -lactic acid) (ODLA) via a graft polycondensation reaction in the presence of para-toluene sulfonic acid and potassium persulfate in toluene at 130 °C for 9 h under 380 mmHg. ODLA was synthesized by the ring-opening polymerization of d -lactides in the presence of stannous octoate (0.03 wt % lactide) and d -lactic acid at 140 °C for 10 h. Composites of poly( l -lactic acid) (PLLA) with the ODLA-grafted α-cellulose were prepared by the solution-mixing and film-casting methods. The grafting of ODLA onto α-cellulose was confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis of the composites was performed with FTIR spectroscopy, SEM, wide-angle X-ray diffraction, and thermogravimetric analysis. The distribution of the grafted α-cellulose in the composites was uniform and showed better compatibility with PLLA through intermolecular hydrogen bonding. Only homocrystalline structures of PLLA were present in the composites, and the thermal stability increased with increasing percentage of grafted α-cellulose. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47424.  相似文献   

19.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was blended with poly(lactic acid) (PLA) with various reactive processing agents to decrease its brittleness and enhance its processability. Three diisocyanates, namely, hexamethylene diisocyanate, poly(hexamethylene diisocyanate), and 1,4‐phenylene diisocyanate, were used as compatibilizing agents. The morphology, thermomechanical properties, and rheological behavior were investigated with scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile testing, dynamomechanical thermal analysis in torsion mode (dynamic mechanical analysis), and oscillatory rheometry with a parallel‐plate setup. The presence of the diisocyanates resulted in an enhanced polymer blend compatibility; this led to an improvement in the overall mechanical performance but did not affect the thermal stability of the system. A slight reduction in the PHBV crystallinity was observed with the incorporation of the diisocyanates. The addition of diisocyanates to the PHBV–PLA blend resulted in a notable increase in the final complex viscosity at low frequencies when compared with the same system without compatibilizers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44806.  相似文献   

20.
In this study, the enhancement of the biodegradation rate of polylactic acid (PLA) filled with commercially available soil amendment product (NTM) or a nanoclay (Cloisite 25A) were evaluated. Cloisite 25A and NTM were incorporated into PLA at 5, 10, 20 (w/w) through melt blending. Transmission electron micrographs revealed particles with a wide range of sizes that were formed by clumping of many smaller particles. The particles showed good dispersion in PLA by scanning electron microscopy. Under standard composting conditions using a standard technique for aerobic biodegradation of plastic materials, it was shown that the addition of NTM enhanced the biodegradation rate of PLA composites by 3- to 4-fold compared to neat PLA. Linear kinetics were used to obtain induction periods, half-lives, and rates of mineralization. Finally, mechanical and thermomechanical properties of these blends were compared with PLA. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. J. Appl. Polym. Sci. 2020 , 137, 48939.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号