首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epoxy/silica nanocomposites containing a wide range of isopropyltri[di(octyl) phosphate] titanate coupling agent (KR-12) modified nanosilica (m-nanosilica) loading (0–7 wt%) cured with tetrabutyl titanate hardener were prepared. Their morphology, thermal stability, thermal expansion, and mechanical properties including hardness, abrasion resistance were investigated. The wetting ability of epoxy-nanosilica systems on glass surface was assessed based on static contact angle. The obtained results showed that the contact angle of the nanocomposites containing m-nanosilica is slightly changed as compared to the contact angle of pure epoxy resin and lower than that of the nanocomposite containing unmodified nanosilica. The data of dynamic mechanical analysis of the nanocomposites using different nanosilica content indicated that the presence of m-nanosilica lowered the recovery energy of the nanocomposites to 41.62% as compared to neat epoxy. The limiting oxygen index (LOI) of the nanocomposites confirmed that the m-nanosilica increased the flame retardance of epoxy matrix. When using 7 wt% of m-nanosilca, the LOI value of the nanocomposite was 27.4 while this index of neat epoxy was 21.6. The scanning electron microscopic images of residual char combustion of the nanocompsites indicated a formation of nanosilica layer contributed to restrain combustion of the material.  相似文献   

2.
Fast curing epoxy resins were prepared by the reactions of diglycidyl ether of bisphenol A with isophorone diamine (IPD) and N-(3-aminopropyl)-imidazole (API), and their curing kinetics and mechanical properties influenced by IPD content were also investigated. The analysis of curing kinetics was based on the nonisothermal differential scanning calorimetry (DSC) data with the typical Kissinger, Ozawa, and Flynn–Wall–Ozawa models, respectively. The glass-transition temperature was also measured by the same technique. Additionally, the mechanical properties including flexural, impact, and tensile performances were tested, and the curing time was estimated by isothermal DSC. The degree of cure (α) dependency of activation energy (Ea ) revealed the complexity of curing reaction. Detailed analysis of the curing kinetics at the molecular level indicated that the dependence of Ea on the α was a combined effect of addition reaction, autocatalytic reaction, viscosity, and steric hindrance. From the nonisothermal curves, the curing reaction mechanism could be proposed according to the increasingly obvious low temperature peaks generated by the addition reaction of epoxy group with the primary amines in API and IPD molecules. Using the preferred resin formulation, the resin system could be cured within 10 min at 120 °C with a relatively good mechanical performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47950.  相似文献   

3.
A high performance copolymer was prepared by using epoxy (EP) resin as matrix and 3,10,17,24-tetra-aminoethoxy lead phthalocyanine (APbPc) as additive with dicyandiamide as curing agent. Fourier-transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TGA) were used to study the curing behavior, curing kinetics, dynamic mechanical properties, impact and tensile strength, and thermal stability of EP/APbPc blends. The experimental results show that APbPc, as a synergistic curing agent, can effectively reduce the curing temperature of epoxy resin. The curing kinetics of the copolymer was investigated by non-isothermal DSC to determine kinetic data and measurement of the activation energy. DMA, impact, and tensile strength tests proved that phthalocyanine can significantly improve the toughness and stiffness of epoxy resin. Highest values were seen on the 20 wt% loading of APbPc in the copolymers, energy storage modulus, and impact strength increased respectively 388.46 MPa and 3.6 kJ/m2, Tg decreased 19.46°C. TGA curves indicated that the cured copolymers also exhibit excellent thermal properties.  相似文献   

4.
In the present study SU8 nanocomposites were prepared by incorporating graphene oxide (GO ), and its effect on the UV curing kinetics, morphology, electrical, hardness and thermal properties of the nanocomposites were investigated at different loading levels of GO (0.1 ? 3 wt%). Studying the reaction kinetics of the UV curing process by means of real‐time infrared spectroscopy showed that the polymerization rate and the final conversion of epoxy groups was related to the loading level of GO in the nanocomposites. An autocatalytic kinetics model of the curing reaction confirmed the effect of GO nanoparticles on the curing rate constant (k ), the order of the initiation reaction (m ) and the ultimate conversion of the UV ‐cured nanocomposites. Appropriate experimental observations indicated that dispersion of GO within the resin plays a critical role on the cure kinetics and final conversion. The results of the kinetics modeling and morphological observations showed that the curing rate constant of the nanocomposites is highly dependent on the GO content and its dispersion state, indicating that GO prevents epoxy resin crosslinking by photoinitator deactivation. Moreover, oxygen functionalities, such as hydroxyl and carboxyl groups, on the surface of GO facilitate interfacial interactions between epoxy groups from the matrix and GO . Electrical conductivity measurements demonstrated that the UV ‐induced photo‐cured GO filled resins are conductive SU8 nanocomposites. It was observed that the thermal stability of the nanocomposites is enhanced due to the dispersion of GO in the matrix. Moreover, the microhardness analysis showed that addition of GO to neat SU8 increases the mechanical hardness of the nanocomposite. © 2016 Society of Chemical Industry  相似文献   

5.
UV‐curable nanocomposites were prepared by the blending method or the in situ method with nanosilica obtained from a sol–gel process. The microstructure and properties of the nanocomposite coatings were investigated using 29Si‐NMR cross‐polarization/magic‐angle spinning, transmission electron microscopy (TEM), Fourier transform IR (FTIR), differential scanning calorimetry (DSC), and UV–visible (UV–vis) spectra, respectively. The NMR and TEM showed that during the blending method, tetraethyl orthosilicate (TEOS) completely hydrolyzed to form nanosilica particles, which were evenly dispersed in the polymer matrix. However, for the in situ method, TEOS partially hydrolyzed to form some kind of microstructure and morphology of inorganic phases intertwisted with organic molecules. FTIR analysis indicated that the nanocomposites prepared from the in situ method had much higher curing rates than those from the blending method. DSC and UV–vis measurements showed that the blending method caused higher glass‐transition temperatures and UV absorbance than the in situ method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1119–1124, 2005  相似文献   

6.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

7.
The influence of two organically modified montmorillonites on the curing, morphology and mechanical properties of epoxy/poly(vinyl acetate)/organoclay ternary nanocomposites was studied. The organoclays and poly(vinyl acetate) (PVAc) provoked contrary effects on the epoxy curing reaction. Ternary nanocomposites developed different morphologies depending on the PVAc content, that were similar to those observed in the epoxy/PVAc binary blends. The organoclays were only located in the epoxy phase independently of the morphology. All nanocomposites showed intercalated structures with similar clay interlayer distances. Both PVAc and organoclays lowered the Tg of the epoxy phase, the presence of clays did not influence the Tg of the PVAc phase. The addition of the organoclays to the epoxy improved stiffness but lowered ductility while the adition of PVAc improved toughness although reduced stiffness of epoxy thermoset. Ternary nanocomposites exhibited optimal properties that combine the favourable effects of the clay and the thermoplastic. POLYM. COMPOS., 37:2184–2195, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
A new soften curing agent for toughening epoxy resins was synthesized by m-phenylene diamine modified with epoxypropyl butyl ether. The curing processes of epoxy resin/modified m-phenylene diamine were traced by differential scanning calorimetry (DSC), then kinetic parameters, ΔE and n, were deduced. Fourier transform infrared (FTIR) analysis showed that the longer the reaction time was, the smaller the absorption peaks of epoxy group were. The results of the mechanical properties demonstrated that the impact property of the epoxy resin cured by modified m-phenylene diamine at the moderate temperature was better than that of cured by unmodified one because of the introduction of soft ether chain. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Abstract

A morphological study was conducted on ternary systems containing epoxy, poly(methyl methacrylate) grafted natural rubber and organic chemically modified montmorillonite (Cloisite 30B), using TEM. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 30B nanocomposites and cured toughened epoxy/Cloisite 30B nanocomposites. Mixing process was performed by mechanical stirring. Poly(etheramine) was used as the curing agent. The detailed TEM images revealed cocontinuous and dispersed spherical rubber in the epoxy–rubber blend, suggesting a new proposed mechanism of phase separation. High magnification TEM analysis showed good interactions between rubber and Cloisite 30B in the ternary system. In addition, it was found that rubber particles could enhance the separation of silicate layers.  相似文献   

10.
A novel tetrafunctional epoxy resin, namely N,N,N′N′-tetrakis(2,3-epoxypropyl)-4,4′-(1,4-phenylenedioxy)dianiline, has been synthesized. The curing kinetics has been studied by differential scanning calorimetry (DSC) using various amine curing agents. Thermal stabilities of the cured products have been investigated by thermogravimetric (TG) analyses. The overall activation energies for the curing reactions are observed to be in the range 63.6–196.7 kJ·mol–1. The cured products have good thermal stability.  相似文献   

11.
A tetraglycidyl 4,4′-diaminodiphenylmethane (TGDDM) type tetrafunctional epoxy resin containing carbon powders was cured with the stoichiometric amount of a tetrafunctional curing agent, namely m-phenylenediamine (mPDA). Carbon powders were oxidised with air or nitric acid. The influence of carbon powders on curing of the resin was followed by dynamic mechanical analysis, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Gelation and vitrification times were determined as a function of the variations of dynamic properties. The evolution of viscoelastic modulus during curing of the different mixtures showed that untreated carbon powder clearly accelerated the kinetics of curing whilst oxidation of carbon powders could remove their catalysing effect. These results were confirmed by monitoring the changes in conversion of epoxy and amine groups during cure using the FTIR technique. DSC experiments also showed the influence of carbon powder as a catalyst and the loss of the catalysing effect as a consequence of chemical treatment.  相似文献   

12.
Summary Research on nanocomposites attracted a lot of attention because of their unique nanostructure and interesting properties. Layered-Silicate epoxy nanocomposites cured by traditional thermal cure processing were prepared, and the morphology was confirmed by the wide-angle x-ray diffraction, small-angle x-ray scattering and transmission electron microscopy. Layered-Silicate epoxy nanocomposites could also be cured through e-beam curing. The small-angle x-ray scattering and transmission electron microscopy indicated that the e-beam-cured nanocomposites showed intercalated nanostructure. Dynamic mechanical analysis showed some improvement of the Storage modulus for the nanocomposites with high Tg. Received 11 October 2002/Revised Version 22 January 2003/ Accepted 23 January 2003 Correspondence to Chenggang Chen  相似文献   

13.
Epoxy based on diglycidyl ether of bisphenol A + 4,4′diaminodiphenylsulfone blended with poly(vinyl acetate) (PVAc) was investigated through differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and environmental scanning electron microscopy (ESEM). The influence of PVAc content on reaction induced phase separation, cure kinetics, morphology and dynamic‐mechanical properties of cured blends at 180°C is reported. Epoxy/PVAc blends (5, 10 and 15 wt % of PVAc content) are initially miscible but phase separate upon curing. DMTA α‐relaxations of cured blends agree with Tg results by DSC. The conversion‐time data revealed the cure reaction was slower in the blends than in the neat system, although the autocatalytic cure mechanism was not affected by the addition of PVAc. ESEM showed the cured epoxy/PVAc blends had different morphologies as a function of PVAc content: an inversion in morphology took place for blends containing 15 wt % PVAc. The changes in the blend morphology with PVAc content had a clear effect on the DMTA behavior. Inverted morphology blends had low storage modulus values and a high capability to dissipate energy at temperatures higher than the PVAc glass‐transition temperature, in contrast to the behavior of neat epoxy and blends with a low PVAc content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1507–1516, 2007  相似文献   

14.
A series of ultraviolet‐curable nanocomposite coatings were prepared with condensed nanosilica particles and with benzophenone/n‐methyl diethanolamine as the initiator. The nanosilica that incorporated into the nanocomposites did not aggregate even when the nanosilica concentration was as high as 22.5%. Adding nanosilica increased the curing speed, thermal stability, and ultraviolet shielding properties of the nanocomposites without reducing the transparency of the ultraviolet‐curing coatings. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 912–918, 2005  相似文献   

15.
Abstract

The morphology and mechanical properties of poly(ethylene terephthalate) (PET)–epoxy blends and the application of these blends in continuous glass fibre reinforced composites have been investigated. Epoxy resin was applied as a reactive solvent for PET to obtain homogeneous solutions with a substantially decreased melt viscosity. The epoxy resin in these solutions was cured using an amine hardener according to two different schedules. In the first, high temperature curing at 260°C preceded low temperature crystallisation of the PET at 180°C. In the second, the PET was allowed to crystallise prior to low temperature curing at 180°C. After cure, all blends revealed a phase separated morphology of dispersed epoxy in a continuous PET matrix. The flexural strength and failure strain of all cured blends showed an increase with increasing epoxy content, whereas the high temperature cured blends exhibited overall lower flexural properties than those cured at the lower temperature. Microstructural analysis and flexural properties of continuous glass fibre reinforced PET–epoxy laminates showed that the composites obtained had a low void content. These PET–epoxy laminates had increased inplane shear strength in comparison with unmodified PET based laminates, indicating considerably increased fibre–matrix adhesion.  相似文献   

16.
Synthesis and properties of urethane elastomer-modified epoxy resins were studied. The urethane elastomer-modified epoxy resins were synthesized by the reaction of a 4-cresol type epoxy compound having hydroxymethyl groups (EPCDA) with isocyanate prepolymer. The structure was identified by IR, 1H NMR and GPC. These epoxy resins (EPCDATDI) were mixed with a commercial epoxy resin (DGEBA) in various ratios. The mixed epoxy resins were cured with a mixture of 4,4′-diaminodiphenylmethane and 3-phenylenediamine (molar ratio 6:4) as a hardener. The curing behaviour of these epoxy resins was studied by DSC. The higher the concentration of EPCDATDI, the higher the onset temperature and the smaller the rate constant (k) of the exothermic cure reaction were. It was considered that the ratio of hydroxymethyl group to epoxide group was very small and the molecular weight of EPCDATDI was large. Therefore, the accelerating effect of the hydroxymethyl group on the epoxide–amine reaction was cancelled by the retardant effect of increased molecular weight and viscosity, and decreased molecular motion. Toughness was estimated by Izod impact strength and fracture toughness (K1C). On addition of 10 wt% EPCDATDI with low molecular weight (M?n 6710, estimated by GPC using polystyrene standard samples), Izod impact strength and K1C increased by 70% and 60%, respectively, compared with unmodified epoxy resin. Glass transition temperatures (Tg) for the cured epoxy resins mixed with EPCDATDI measured by dynamic mechanical spectrometry were the same as those of unmodified epoxy resin. The storage modulus (E′) at room temperature decreased with increasing concentration of EPCDATDI. Toughness and dynamic mechnical behaviour of cured epoxy resin systems were studied based on the morphology.  相似文献   

17.
UV‐curable nanocomposites were prepared by the in situ photopolymerizaton with nanosilica obtained from sol–gel process. The photoinitiator 2‐hydroxy‐2‐methyl‐1‐phenylpropane‐1‐one (1173) was anchored onto the surface of the nanosilica with or without methacryloxypropyltrimethoxysilane (MAPS) modification. The photopolymerization kinetics was studied by real‐time Fourier transform IR (RTIR), and the microstructure and properties of the nanocomposite were investigated using transmission electron microscopy and UV–visible (UV–vis) transmistance spectra. RTIR analysis indicated that the nanocomposites without MAPS had higher curing rates and final conversion than those with MAPS. The nanocomposites with an uniformal dispersion of nanosilica had high UV–vis transmittance. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Three epoxy‐amine thermoset systems were cured at a low ambient temperature. Evolution of the reaction kinetics and molecular structure during cure at the sub‐glass transition temperature was followed by DSC and chemorheology experiments. The effect of vitrification and the reaction exotherm on curing and final mechanical properties of the epoxy thermosets was determined. Thermomechanical properties of the low‐temperature cured systems depend on the reaction kinetics and volume of the reaction mixture. Curing of the fast‐reacting system in a large volume (12‐mm thick layer) resulted in the material with Tg exceeding the cure temperature by 70–80°C because of an exothermal temperature rise. However, the reaction in a too large volume (50‐mm layer) led to thermal degradation of the network. In contrast, thin layers (1.5 mm) were severely undercured. Well‐cured epoxy thermosets could be prepared at sub‐Tg temperatures by optimizing reaction conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3669–3676, 2006  相似文献   

19.
The curing properties and adhesive strengths of the epoxidized natural rubber (ENR, 25 mole percent epoxidation) modified epoxy systems are studied with differential thermal calorimetry (DSC), scanning electron microscopy (SEM), and lap shear strength (LSS) measurement. The results of DSC analyses indicate that the curing exotherm, the curing rate, the reaction order, and the glass transition temperature of the epoxy system are affected by the presence of reactive ENR. From SEM micrographs, it is obtained that a second spherical rubber phase is formed during cure and the particle size of the rubber phase is increased by increasing the curing temperature and the ENR content. The changes of the volume fraction of the rubber phase and the Tg of the cured systems indicate that the mutual dissolution between epoxy resin and ENR happens and which changes with the curing temperature and the ENR content. The LSS of adhesive joints prepared with the ENR modified adhesives are all lower than those of the unmodified epoxy system, and decrease with increasing the amount of ENR added because of the limited compatibility of the ENR with the epoxy matrix.  相似文献   

20.
Thermal behavior of polylactic acid (PLA)/nanosilica nanocomposites prepared via bulk ring opening polymerization from lactide was investigated by differential scanning calorimetry and thermogravimetric analysis (TGA). Both unmodified nanosilica and modified by surface treatments with different amounts of two distinct silanes were used. Samples containing pure silica show enhanced crystallization processes; with silane‐modified silica this effect is magnified, especially in the case of materials with high loadings of epoxy silane. Nonisothermal crystallization temperatures become higher and isothermal crystallization kinetics show a marked increase of Kinetic constant (Kc). TGA analyses show that, when pure nanosilica is present, nanocomposites have a thermal stability far greater than the one of standard PLA, starting their degradation at temperatures up to 70°C higher than the ones of pure PLA. When silanes are present, thermal stability lowers as silane content increases, but it is anyway higher than the one of the pure polymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号