首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bismaleimides (BMI) are thermosetting polymers that are widely used in the aerospace industry due to their good physical properties at elevated temperatures and humid environments. BMI‐based composites are used as a replacement for conventional epoxy resins at higher service temperatures. Out‐of‐Autoclave (OOA) processing of BMI composites is similar to that of epoxies but requires higher cure temperatures. Polymer properties such as degree of cure and crosslink density are dependent on the cure cycle used. These properties affect mechanical strength as well as glass transition temperature of the composite. In the current research, carbon fiber/BMI composite laminates were manufactured by OOA processing. The void content was measured using acid digestion techniques. The influence of cure cycle variations on glass transition temperature and mechanical strength was investigated. Properties of manufactured specimens were compared with that of conventional autoclave cured BMI composites. Laminates fabricated via OOA processing exhibited properties comparable to that of autoclave cured composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43984.  相似文献   

2.
One application of phenolic resins is for the inner lining of multilayered composites in fire critical applications. Typically such resins contain water as a diluent to facilitate injection and mold filling. Although water is effective in controlling the viscosity, its evaporation from the resin during cure has been found to cause microvoids in the cured resin that are 8–10 μm in size. These voids are believed to affect the properties of the final product. In addition to the initial water content, evolution of water also takes place as a result of cure. In this study, we investigated the effects of processing parameters such as cure temperature, postcure temperature, catalyst concentration, and the use of ethylene glycol as a replacement diluent on water loss, microvoid distribution, and consequently, the mechanical properties. Weight loss during cure was followed by using a thermogravimetric analyzer (TGA). Scanning electron microscopy (SEM) was used to obtain images of cured resin showing the microvoids. The properties that have been obtained for comparison are density, flexural modulus and strength, and fracture toughness. It has been shown that modification of the resin by removing the initial water of a commercial resin system and adding ethylene glycol as a replacement has the most significant effect on the microvoids as well as the properties of the polymer. A decrease in void content and increase in density along with a significant improvement in flexural modulus and fracture toughness have been observed upon replacement of water with ethylene glycol. This is significant because of the importance of the phenolic layer to the overall mechanical performance of a hybrid composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3096–3106, 2004  相似文献   

3.
Changes in the dynamic response of glass‐reinforced phenolic composites following thermal exposure at 180oC for periods of time up to 28 days were monitored using dynamic mechanical analysis. Four phenolic resins were investigated: a resol/novolac blend, a phenolic–furan novolac/resol graft copolymer, a novolac, and a resol. Reactive blending and copolymerization of phenolic resins are currently being investigated to determine if these techniques will produce phenolic resins (and composites) that have improved impact properties and retain the excellent high‐temperature properties of resol and novolac phenolic resins. The results indicate that thermal aging at 180oC for 1 day led to a more complete cure of all four phenolic resins as indicated by an increase in the temperature of the maximum of plots of both loss modulus (E″) and tan δ versus temperature. The storage modulus (E′) of the composites at 40oC varied little following thermal aging at 180oC for 1 day but decreased with increasing exposure time for samples aged 2, 7, and 28 days. Thermal aging led to an increase in E′ at higher temperatures and the magnitude of E′ at a given temperature decreased with increasing exposure time. The magnitude of E″ and tan δ decreased with aging time for all resins, although E″ and tan δ were larger for the blend and copolymer composites than for the novolac and resol composites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 385–395, 2001  相似文献   

4.
Lignocellulosic materials can be used for the development of bio‐based composites. This study explores the potential of long bamboo fiber bundles extracted directly from bamboo stems using the novel mechanical method and bamboo‐based fiber composites (BFC) fabricated using long bamboo fiber bundles and phenolic resins via cold pressing and thermal cure process. The microstructure, mechanical properties, and durability of BFC were evaluated, results being compared with raw bamboo and other commercialized bamboo fiber composites. The mechanical properties of BFC reinforced with 87% (w/w) long bamboo fiber bundles increased more than 50% than those of raw bamboo and were significantly higher than those of other bamboo‐based composites. Lower water absorption and thickness swelling were obtained in the case where bamboo fiber bundles with the small fineness. Higher tensile strength was obtained in the case where bamboo fiber bundles with large sizes of bamboo fiber bundles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40371.  相似文献   

5.
A new class of phenolic thermosetting resins is developed that is based on the ring‐opening polymerization of a benzoxazine precursor. These new materials seek to combine the thermal properties and flame retardance of phenolics with the mechanical performance and molecular design flexibility of advanced epoxy systems. These materials overcome many of the traditional shortcomings of conventional novolac and resole‐type phenolic resins, while retaining their benefits. The viscoelastic behavior of the polybenzoxazines during isothermal cure is monitored by dynamic mechanical analysis. Isochronic measurements show that although the aniline‐based benzoxazine has a lower activation energy for the gelation process than the methylamine‐based resin, it has a slower rate of reaction. The purified monomer and as‐synthesized precursor for each benzoxazine are found to polymerize by the same mechanism, despite the absence of an initiating species in the purified resins. The chemical gelation phenomenon of the methylamine‐based resin is probed by a multifrequency dynamic cure analysis that allows determination of the instant of chemical gelation, as well as the network relaxation exponent, n. The constant value of the exponent regardless of cure temperature demonstrates that chemical gelation is, in fact, an isoconversion event for the methylamine‐based benzoxazine. The multifrequency and isochronic analyses are shown to produce very similar gel times and activation energies for the gelation process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 406–417, 2001  相似文献   

6.
We have studied an epoxy resin formulation consisting of the diglycidyl ether of bisphenol-A (DGEBA), modified with phenolic hydroxyl-terminated polysulfone (PSF) and cured with an aromatic amine curing agent, diaminodiphenyl sulfone (DDS). A range of microstructures and fracture properties have been obtained by controlling the formulation cure conditions (cure temperature and cure cycle in an isothermal mode). The chemical conversion of the cured resins has been monitored by near-infrared spectroscopy (NIR). Although only a single material formulation was used, three distinct types of microstructure were identified by scanning electron microscope (SEM) observations on samples prepared at different cure temperatures. Surprisingly, the thermal and fracture properties of the cured samples did not vary noticeably, in spite of the significant microstructure variations. The consistency of these fracture toughness results with cure temperature changes was an unexpected result in the light of our earlier observations of a strong dependence of fracture toughness on cure temperature in neat resin systems. The difference in behavior between neat and modified resins reveals that the fracture toughness of the latter is dependent on a combination of the microstructure and the matrix resin properties. This hypothesis was also supported by an observation of high fracture thoughness in a sample cured in a two-step process, which we believe is due to the optimum microstructure and matrix resin properties, being achieved separately during precure and postcure, respectively. The increase in fracture toughness values caused by the modification (ΔGIC) was calculated from the fracture toughness values of neat and modified resins, prepared under the same cure conditions, using a proposed theoretical equation. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Alkyne functional phenolic resin was cured by azide functional epoxy resins making use of alkyne‐azide click reaction. For this, propargylated novolac (PN) was reacted with bisphenol A bisazide (BABA) and azido hydroxy propyloxy novolac (AHPN) leading to triazole‐linked phenolic‐epoxy networks. The click cure reaction was initiated at 40–65°C in presence of Cu2I2. Glass transition temperature (Tg) of the cured networks varied from 70°C to 75°C in the case of BABA‐PN and 75°C to 80°C in the case of AHPN‐PN. DSC and rheological studies revealed a single stage curing pattern for both the systems. The cured BABA‐PN and AHPN‐PN blends showed mass loss above 300°C because of decomposition of the triazole rings and the novolac backbone. Silica fiber‐reinforced syntactic foam composites derived from these resins possessed comparable mechanical properties and superior impact resistance vis‐a‐vis their phenolic resin analogues. The mechanical properties could be tuned by regulating the reactant stoichiometry. These low temperature addition curable resins are suited for light weight polymer composite for related applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41254.  相似文献   

8.
This work investigates the valorization of sodium lignosulfonate, kraft, and organosolv lignins from South America. A detailed characterization of the lignins and their chemical modification by hydroxymethylation through its reaction with formaldehyde were performed. The characterization included measurements of moisture, ash, carbohydrate contents, elemental and thermogravimetric analysis, and functional groups, molar mass distributions by Fourier transform infrared spectroscopy, and size exclusion chromatography, respectively. Also, reactive aromatic hydrogens ( HAr) were quantified by the measurement of phenolic hydroxyl groups (P-OH) content by UV–Vis spectroscopy. The different initial formaldehyde/lignin weight ratios (0.07, 1.47), temperatures (40, 50, and 70 °C), and pHs (9, 11); and the following of hydroxymethylation reactions by UV–Vis spectroscopy were investigated. All lignins resulted attractive for the use as replacement of phenol in phenolic resins, but sodium lignosulfonate was the most appropriate due to its water solubility. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47712.  相似文献   

9.
Three 4-hydroxyphenylmaleimide/ n-butylacrylate (HPMI/n-BuA) copolymers with different monomer ratios were synthesized. Their average molecular weights, glass transition temperatures (T,g), and thermal decomposition temperatures were measured. It was found that these copolymers had higher average molecular weights and higher thermal decomposition temperatures than novolac. Modified phenolic resins were prepared by transfer moulding from moulding compounds consisting of novolac, the copolymer, hexamethylenetetramine (hexamine), and glass fibre. Properties of the three kinds of modified phenolic resins were examined by flexural test, impact test, dynamic thermomechanometry, and observation of morphology. It was found that phenolic resin modified with HPMI/ n-BuA (1/3-6) copolymer and modified with HPMI/n-BuA (1/7-0) copolymer showed good toughness and good heat resistance. It was also found that the heat resistance of modified phenolic resins was improved by after-cure, but the mechanical properties were decreased by after-cure: similar behaviour was observed for unmodified phenolic resin.  相似文献   

10.
The interdependence between the curing conditions, structure, and the mechanical properties of tow neat phenolic resin systems was investigated. Changes of the distribution of the void diameters were characterized by light‐ an scanning electron microscope analyses. Tensile tests and dynamic mechanical thermo analysis were performed to determine the influence of the hardener concentration and the curing temperature on the mechanical and the thermomechanical properties. The study reveals that the hardener concentration predominately influenced the microscopic structure, and thus the mechanical properties of the phenolic resin systems. By varying the postcuring times, it can be shown that independent from the microstructure of the phenolic resin system, the degree of cure has a strong influence on the mechanical properties. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3173–3185, 1999  相似文献   

11.
New epoxy-imide resins were synthesized using bis(hydroxyphthalimide)s (BHPIs). Among these resins, that cured with BHPI(DDS), synthesized from 4,4′-diaminodiphenylsulfone, exhibits the best thermal resistance, reaching a tan δ maximum temperature of 230°C. This resin also features a tensile lap shear adhesive strength of 320 kgf/cm2 when applied to steel test pieces. The cure reaction was followed by infrared spectroscopy and dynamic mechanical analysis. The ring-opening reaction between the phenolic hydroxyl group of BHPI and the epoxy group is observed, and accelerated by a tertiary amine catalyst, triethylamine.  相似文献   

12.
The physical and hence mechanical properties of carbon fiber reinforced epoxy resin are affected by the curing conditions used in their manufacture. The relationship between the cure temperature and pressure and the density, fiber volume fraction, and the void content of cured laminates, was investigated. For the unidirectional 914C prepreg material used, an optimum cure temperature was found which gave maximum fiber volume fraction and composite density, and minimum void content. This behavior is related in the paper to resin flow and cure characteristics. A linear relationship between cure pressure and fiber volume fraction is reported and explained by reference to the void content of the laminates. It is concluded that in-house trials are required to determine the optimum size of the processing window for specific systems and components.  相似文献   

13.
The development of internal stress during cure of epoxy and hyperbranched polymer-modified epoxy resins was characterized, taking into account the evolving viscoelastic properties, the volumetric shrinkage due to the chemical reaction, and the thermal expansion. A criterion for void formation during cure in a constrained mold was proposed, providing guidelines for the construction of a process window for manufacturing of void-free composites. It was shown that the internal stress development in epoxy resins during cure is strongly influenced by the presence of hyperbranched polymer modifiers. The role of these modifiers was illustrated for the case of autoclave processing of glass fiber/epoxy composites. This study showed that higher fiber volume fractions could be used with hyperbranched polymer-modified resins than with unmodified resins, for producing void-free laminates. It also appeared that by suitable tailoring of the process cycle, a fully stress-free laminate could be obtained after cure, using the modified resin.  相似文献   

14.
A new approach involving dynamic melt rheology i.e. dynamic mechanical analysis in a molten inert matrix, is presented for studying the cure of thermoset resins. The degree of cure by dynamic melt rheology has been correlated with that from differential scanning calorimetry, DSC (correlation coefficient = 0.87) and the lack of an excellent correlation is attributed to the uncertainties with the DSC method at higher cure levels. A kinetic expression with appropriate constants, “E, A, and n” from our new approach is presented for predicting the time-temperature dependence of the degree of cure. Advantages of dynamic melt rheology are discussed in relationship to conventional dynamic mechanical and DSC methods.  相似文献   

15.
Partial cure of thermosets is a promising approach to enhance manufacturing possibilities of reinforced and unreinforced polymers. If partial cure is taken into consideration as a genuine process parameter, novel manufacturing technologies can be developed by exploiting the specific properties of incomplete polymer networks. A main concern in this context is to control the kinetic reaction avoiding inhomogeneous or instable degrees of cure. Based on a combination of numerical simulations and experiments, a methodology is presented that enables a systematic assessment of the reproducibility and stability of partial cure. Special attention is paid to the interaction of thermal boundary conditions and the cure kinetic of thick samples as well as the storability of partially cured resin under different conditions. Guidelines for cure cycle selection, mold design, and storage are derived. The possibility to use complex multistep cure schedules and extended storage periods is demonstrated for an unmodified noninhibited epoxy resin. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals Inc. J. Appl. Polym. Sci. 2020 , 137, 48342.  相似文献   

16.
Phenol–formaldehyde (PF) resins have been the subject of many model‐fitting cure kinetic studies, yet the best model for predicting PF dynamic and isothermal cure has not been established. The objective of this research is to compare and contrast several commonly used kinetic models for predicting degree of cure and cure rate of PF resins. Toward this objective, the nth‐order Borchardt–Daniels (nth‐BD), ASTM E698 (E698), autocatalytic Borchardt–Daniels (Auto‐BD), and modified autocatalytic methods (M‐Auto) are evaluated on two commercial PF resins containing different molecular weight distributions and thus cure behaviors. The nth‐BD, E698, and M‐Auto methods all produce comparable values of activation energies, while Auto‐BD method yields aberrant values. For dynamic cure prediction, all models fail to predict reaction rate, while degree of cure is reasonably well predicted with all three methods. As a whole, the nth‐BD method best predicts degree of cure for both resins as assessed by mean squared error of prediction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
The effects of three curing systems, peroxide, peroxide–phenolic combination, and phenolic on selected properties of cured carbon black‐filled ethylene–propylene–diene monomer rubber (EPDM) were investigated. The cured rubbers immersed in hot amine solution to evaluate their suitability for seal and gasket industry at elevated temperature and amine environments. These tests were essential for evaluating the durability of the gasket in a gas refinery. The Fourier transform infrared spectroscopy spectrums revealed that the phenolic crosslink was constructed between rubber macromolecules during the curing process. The changing curing system from peroxide to peroxide–phenolic and phenolic increased the glass transition temperature of the filled cured rubbers between 3 and 5 °C. There was not any significant difference between thermogravimetric analysis thermographs of the selected cured rubbers with various cure systems and the residues ranged between 45% and 47%. Unlike of peroxide curing system, a dual phase was observed from scanning electron microscopy micrographs for peroxide–phenolic and phenolic cure systems. The phenolic cure system was not beneficial for rubber curing although, it reduced scorch time of the curing process. For the most studied mechanical properties, phenolic cure system deteriorated mechanical properties for both, aged and unaged cured rubbers. Increasing the amount of diene monomer in EPDM structure was beneficial for phenolic rubber cure system. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46213.  相似文献   

18.
Extent of cure and rheological properties were obtained for out‐of‐autoclave materials, Cycom 5320‐8HS and Cycom 5320‐PW, for the manufacturer recommended cure cycle using differential scanning calorimeter and encapsulated sample rheometer (ESR), respectively. Rheological properties from ESR were further used in designing the cure cycles to study the evolution of mechanical properties. Five panels were cured at different cure stages using the designed cure cycles and coupons were tested for short beam shear and combined loading compression properties at different cure stages. To correlate the mechanical properties with its respective glass transition temperature, dynamic mechanical analyzer was used to obtain the glass transition temperature for the coupons obtained from the respective panels. Statistical results showed significant difference in short beam shear and combined loading compression properties up to vitrification, however, no significant difference was observed on these mechanical properties after vitrification. The observed linear trend between degree of cure (DOC) and glass transition temperature (Tg) was validated using DiBenedetto relation. Linearly increasing trend between DOC and glass transition temperature (Tg) for different cure states suggests that both DOC and Tg can be used interchangeably to define the state of material. A good correlation was observed between material cure state and the mechanical properties. A mathematical model was also proposed to determine the short beam shear and combined loading compression properties based on material cure state. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41548.  相似文献   

19.
In this study, sodium carbonate (Na2CO3) was used as a catalyst to prepare high-ortho phenol-formaldehyde (HOPF) resin, and ester and carbonate curing accelerators were used to increase its curing rate. The physicochemical properties of the prepared resins and the mechanism of curing acceleration were investigated. The results showed that, with the addition of Na2CO3, the ortho/para ratio of methylol groups increased from 7.257 to 27.800. The gel time of the cure-accelerated HOPF resins decreased from 620 to 240 s as compared with PF resin. The bonding strength of plywood bonded with the cure-accelerated HOPF resins were all above 0.70 MPa. The curing acceleration was caused by the carbonate ions rather than the metal ions, and a temporary incorporation mechanism apparently occurred for the ester accelerators. The prepared phenolic resin had fast curing rate, low curing temperature, high thermal stability, and favorable mechanical performance, which has potential for industry applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47229.  相似文献   

20.
Resole phenolic resins containing various p-cresol (PC) to phenol (P) mol ratios were prepared and characterized. These phenolic resins were blended with nitrile rubber (NBR) and the measurements of adhesive joint strength, stress–strain properties, DSC, TGA, DMA, TEM, and SEM were performed using a 50 : 50 NBR/phenolic resin blend. It was observed that the adhesive joint strength and the mechanical properties of the blend enhanced significantly on incorporation of p-cresol into the phenolic resin, and the optimum p-cresol/phenol mol ratio was in the vicinity of 2 : 1. Observation of a more continuous phase and the increase in Tg of the rubber region in the blend indicated increased reactivity and compatibilization of NBR with phenolic resin as p-cresol was incorporated. The effect of silica filler on the properties of the nitrile rubber/phenolic resin blend was also studied without and with p-cresol modification and the results suggest that silica filler take not only the role of a reinforcing filler in the nitrile–phenolic–silica composite, but also a role as surface compatibilizer of the blend components. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1187–1201, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号