首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New types of hydrogels derived from O‐acetyl galactoglucomannan (AcGGM) hemicellulose have been synthesized and characterized. The objective of this work was to analyze the sorption capacity (S) of three types of hydrogels containing AcGGM derivatives incorporated into the carboxylic groups of the polymer chain in the AA hydrogel, sulfonic groups in the APA hydrogel, and amide groups in the acrylamide (Aam) hydrogel. These hydrogels are capable of interacting and removing ions such as cadmium [Cd(II)], copper [Cu(II)], lead [Pb(II)], nickel [Ni(II)], and zinc [Zn(II)]. The results show that AA and Aam hydrogels had a lower sorption capacity of ions compared to the APA hydrogel, which had a high sorption capacity. The maximal sorption capacity was determined by the successive enrichment method, obtaining Pb(II) amount of 48.3 mg/g of AA hydrogel, 65.8 mg/g of APA hydrogel, and 40.8 mg/g of Aam hydrogel. Hence, Pb(II) ions are greatly retained by the three hydrogels. These results are promising for the development of new materials with potential applications in metal ion removal. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44093.  相似文献   

2.
Poly(N‐vinyl‐2‐pyrrolidone‐g‐citric acid) [P(VP‐g‐CA)] hydrogels were prepared for the removal of U(VI), Pb(II), and Cd(II) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L). Different pHs (1–13), temperatures (20–40°C), and ionic strengths (0.5M) were also tried for the adsorption behavior of these ions. The competitive adsorption values of U(VI), Pb(II), and Cd(II) ions on pure poly(N‐vinyl‐2‐pyrrolidone) were low [0.71–2.03 mg of U(VI)/g of dry gel, 0.15–1.58 mg of Pb(II)/g of dry gel, and 0.10–0.68 mg of Cd(II)/g of dry gel]. The incorporation of citric acid significantly increased the adsorption of these ions [0.67–2.12 mg of U(VI)/g of dry gel, 0.44–1.88 mg of Pb(II)/g of dry gel, and 0.04–0.92 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐1; 0.71–2.36 mg of U(VI)/g of dry gel, 0.60–2.16 mg of Pb(II)/g of dry gel, and 0.14–0.80 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐2; and 0.79–2.47 mg of U(VI)/g of dry gel, 0.70–2.30 mg of Pb(II)/g of dry gel, and 0.20–0.86 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐3]. The observed affinity order of adsorption was U(VI) > Pb(II) > Cd(II) for competitive conditions. The optimal pH range for the removal of these ions was 5–9. Competitive adsorption studies showed that other stimuli, such as the temperature and ionic strength of the solution, also influenced the U(VI), Pb(II), and Cd(II) adsorption capacity of P(VP‐g‐CA) hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2019–2024, 2003  相似文献   

3.
Alginate-immobilized Trichoderma asperellum were superior in adsorbing metals in single-metal systems compared to multi-metal systems. Higher amounts of Cu(II), Zn(II) and Cd(II) were adsorbed in single-metal systems with 72.00, 20.61 and 51.77 mg metal removed g?1 biosorbent, respectively, compared to multi-metal systems. On the contrary, only Pb(II) (112.70 mg g?1 biosorbent) was removed more efficiently in multi-metal systems. Both biosorbents showed similar biosorption behaviour, with higher uptakes of Zn(II) < Cd(II) < Cu(II) < Pb(II) in both single- and multi-metal systems. This was attributed to the carboxyl and hydroxyl functional groups on the surface of alginate.  相似文献   

4.
This study examined the effectiveness of a new adsorbent prepared from banana (Musa paradisiaca) stalk, one of the abundantly available lignocellulosic agrowastes, in removing Pb(II) and Cd(II) ions from aqueous solutions. The adsorbent (PGBS‐COOH) having a carboxylate functional group at its chain end was synthesized by graft copolymerization of acrylamide on to banana stalk, followed by functionalization. Batch adsorption experiments were carried out as a function of solution pH, ionic strength, contact time, metal concentration, adsorbent dose and temperature. A pH range of 5.5–8.0 was found to be effective for the maximum removal for both Pb(II) and Cd(II). Metal uptake was found to decrease with increase in ionic strength due to the expansion of the diffuse double layer and, more importantly, the formation of some chloro complexes (since NaCl was used in the adjustment of ionic strength), which do not appear to be adsorbed to the same extent as cations [M2+ and M(OH)+]. The kinetic studies showed that an equilibrium time of 3 h was needed for the adsorption of Pb(II) and Cd(II) on PGBS‐COOH and adsorption processes followed a pseudo‐second‐order equation. The Langmuir isotherm model fitted the experimental equilibrium data well. The maximum sorption capacity for Pb(II) and Cd(II) ions was 185.34 and 65.88 mg g?1, respectively, at 30 °C. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were derived to predict the nature of adsorption. The isosteric heat of adsorption was found to be independent of surface coverage. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC‐50, for comparison. Synthetic wastewater samples were treated with the adsorbent to demonstrate its efficiency in removing Pb(II) and Cd(II) ions from industrial wastewaters. Acid regeneration was tried for several cycles with a view to recovering the sorbed metal ions and also restoring the sorbent to its original state. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
The adsorption of Pb(II) and Cd(II) ions with crosslinked carboxymethyl starch (CCS) was investigated as function of the solution pH, contact time, initial metal‐ion concentration, and temperature. Isotherm studies revealed that the adsorption of metal ions onto CCS better followed the Langmuir isotherm and the Dubinin–Radushkevich isotherm with adsorption maximum capacities of about 80.0 and 47.0 mg/g for Pb(II) and Cd(II) ions, respectively. The mean free energies of adsorption were found to be between 8 and 16 kJ/mol for Pb(II) and Cd(II) ions; this suggested that the adsorption of Pb(II) and Cd(II) ions onto CCS occurred with an ion‐exchange process. For two‐target heavy‐metal ion adsorption, a pseudo‐second‐order model and intraparticle diffusion seem significant in the rate‐controlling step, but the pseudo‐second‐order chemical reaction kinetics provide the best correlation for the experimental data. The enthalpy change for the process was found to be exothermic, and the ΔSθ values were calculated to be negative for the adsorption of Pb(II) and Cd(II) ions onto CCS. Negative free enthalpy change values indicated that the adsorption process was feasible. The studies of the kinetics, isotherm, and thermodynamics indicated that the adsorption of CCS was more effective for Pb(II) ions than for Cd(II) ions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Metal‐chelating membranes have advantages as adsorbents in comparison with conventional beads because they are not compressible and they eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of poly(2‐hydroxyethyl methacrylate–methacryloylamidohistidine) [poly(HEMA–MAH)] membranes for the removal of three toxic heavy‐metal ions—Cd(II), Pb(II), and Hg(II)—from aquatic systems. The poly(HEMA–MAH) membranes were characterized with scanning electron microscopy and 1H‐NMR spectroscopy. The adsorption capacity of the poly(HEMA–MAH) membranes for the selected heavy‐metal ions from aqueous media containing different amounts of these ions (30–500 mg/L) and at different pH values (3.0–7.0) was investigated. The adsorption capacity of the membranes increased with time during the first 60 min and then leveled off toward the equilibrium adsorption. The maximum amounts of the heavy‐metal ions adsorbed were 8.2, 31.5, and 23.2 mg/g for Cd(II), Pb(II), and Hg(II), respectively. The competitive adsorption of the metal ions was also studied. When the metal ions competed, the adsorbed amounts were 2.9 mg of Cd(II)/g, 14.8 mg of Pb(II)/g, and 9.4 mg of Hg(II)/g. The poly(HEMA–MAH) membranes could be regenerated via washing with a solution of nitric acid (0.01M). The desorption ratio was as high as 97%. These membranes were suitable for repeated use for more than three adsorption/desorption cycles with negligible loss in the adsorption capacity. The stability constants for the metal‐ion/2‐methacryloylamidohistidine complexes were calculated to be 3.47 × 106, 7.75 × 107, and 2.01 × 107 L/mol for Cd(II), Pb(II), and Hg(II) ions, respectively, with the Ruzic method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1213–1219, 2005  相似文献   

7.
Chloromethylated polystyrene‐divinylbenzene has been functionalized with dithiooxamide. The resulting chelating resin (DTOA) has been characterized by elemental analyses, infrared spectroscopy, thermogravimetric analysis, and metal ion sorption capacities. It has been used for the preconcentration and separation of Cu(II), Zn(II), Cd(II), and Pb(II) prior to their determination by FAAS. Parameters such as the amount of the resin, effect of pH, equilibration rate, sorption and desorption of metal ions, and effect of diverse ions have been studied. The maximum sorption capacities found are 0.97, 0.12, 0.08, and 0.12 mmol g?1 for Cu(II), Zn(II), Cd(II), and Pb(II) at pH 6.0, 5.5, 1.0, and 5.5, respectively. The preconcentration factors are 100, 100, 50, and 50 for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. Recoveries of the metal ions were 96 ± 5, 97 ± 6, 96 ± 5, and 96 ± 5 at 95% confidence level, whereas the limits of detection are 2.0, 1.3, 2.5, and 25.0 μg L?1 for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The calibration curves were linear up to 12 μg mL?1 (R2 = 1.000), 2 μg mL?1 (R2 = 0.998), 2 μg ml?1 (R2 = 1.000), and 5 μg mL?1 (R2 = 0.979) for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The reliability of the method has been tested by analyzing certified samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2281–2285, 2007  相似文献   

8.
ABSTRACT

Hydrogel materials, due to their special three-dimensional network structure that can be used as adsorbents. The hydrogel combined with the inorganic nanomaterials has superior adsorption performance. Herein, we report that a snowflake-like nZnO/SA-co-AA composite hydrogel (NZCH) with a double network structure is synthesized via graft copolymerization of nano zinc oxide (nZnO) with sodium alginate (SA) and acrylic acid (AA). The hydrogel exhibits the adsorption efficiency of 200 mg/g, has a good effect in adsorbing Pb(II). Meanwhile, the hydrogel has an antibacterial activity against Escherichia coli of 99%. It holds broad prospects for obtaining this multifunctional hydrogel in the field of adsorbing Pb(II).  相似文献   

9.
Heavy metal removal from wastewater is crucial for the proper management of discharged water from mining operations. This residual water is typically unusable for other purposes such as for human/animal, crop, or industrial consumption. Eco‐friendly adsorption materials are necessary to ensure the sustainable treatment of this wastewater. Therefore, the sorption of Cu(II), Cd(II), Pb(II), and Zn(II) ions onto chitosan–tripolyphosphate (CTPP) beads was investigated using real mining wastewater and prepared ion metal solutions. The effects of pH, contact time, temperature, selectivity, and maximum sorption capacity in successive batches at different concentrations were studied. The optimum sorption of cations, except for copper (pH 3) was found at pH 5. Equilibrium in the adsorption of all metals was reached at 24 h of contact. Studies of the maximum sorption capacity at different concentrations showed that the CTPP beads could adsorb 158, 55, 47, and 47 mg/g of Pb(II), Cu(II), Cd(II), and Zn(II), respectively. Experimental data for the sorption of Pb(II) were optimally correlated with the Langmuir model. The thermodynamic parameters such as the changes in enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0) were determined. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45511.  相似文献   

10.
Two new chelating polymeric hydrogels, crosslinked polyacrylamide/triethylenetetraamine/CS2Na (hydrogel I) and crosslinked polyacrylamide/diethylenetriamine/CS2Na (hydrogel II), were prepared by the transamidation and dithiocarbamylation of crosslinked polyacrylamide. The products were characterized with elemental analysis and IR spectroscopy. In both polymeric hydrogels, the optimum pH for the removal of Cd(II), Pb(II), and Zn(II) ions ranged from 7 to 8, from 6 to 7, and from 7 to 8, respectively. The sorption isotherms of the investigated metal ions on the prepared hydrogels were developed, and the equilibrium data fitted the Langmuir and Freundlich isotherm models well. At the optimum pH for each metal ion, the maximum sorption capacities of hydrogel I toward Cd(II), Pb(II), and Zn(II) ions, estimated from the Langmuir model, were 5.3, 0.63, and 1.27 mmol/g, respectively, and those of hydrogel II were 4.1, 0.59, and 0.89 mmol/g, respectively. The experimental sorption capacities of hydrogel I toward Cd(II), Pb(II), and Zn(II) ions were 4.5, 0.6, and 1.2 mmol/g, respectively. In the case of hydrogel II, the capacities were 3.7, 0.52, and 0.88 mmol/g in the same prescribed order. The thermodynamic parameters (the free energy of sorption, enthalpy change, and entropy change) for cadmium, lead, and zinc sorption on the prepared polymers were also determined from the temperature dependence. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Various adsorbent materials have been reported in the literature for heavy metal removal. We have developed a novel approach to obtain high metal sorption capacity utilising cysteine containing adsorbent. Metal complexing aminoacid-ligand cysteine was immobilised onto poly(hydroxyethylmethacrylate) (PHEMA) microbeads. PHEMA-cysteine affinity microbeads containing 0.318 mmol cysteine/g were used in the removal of heavy metal ions (i.e. copper, lead and cadmium) from aqueous media containing different amounts of these ions (50–400 mg/l for Pb(II) and Cd(II), 25–60 mg/l for Cu(II)) and at different pH values (4.0–7.0). The maximum adsorption capacity of heavy metal ions onto the cysteine-containing microbeads under non-competitive conditions were 0.259 mmol/g for Pb(II), 0.330 mmol/g for Cd(II) and 0.229 mmol/g for Cu(II). The affinity order was observed as follows: Cd(II)>Pb(II)>Cu(II). The competitive adsorption capacities of the heavy metals were 0.260 mmol/g for Cd(II) and 0.120 mmol/g for Cu(II). Pb(II) adsorption onto cysteine-immobilised microbeads was zero under competitive conditions. The affinity order was as follows: Cd(II)>Cu(II)>Pb(II). The formation constants of cysteine–metal ion complexes have been investigated applying the method of Ruzic. The calculated value of stability constants were 1.75×104 l/mol for Pb(II)–cysteine complex and 4.35×104 l/mol for Cd(II)–cysteine complex and 1.39×104 l/mol for Cu(II)–cysteine complex. PHEMA microbeads carrying cysteine can be regenerated by washing with a solution of hydrochloric acid (0.05 M). The maximum desorption ratio was greater than 99%. These PHEMA microbeads are suitable for repeated use for more than three adsorption–desorption cycles without considerable loss in adsorption capacity.  相似文献   

12.
Ahmet Sar? 《Desalination》2009,249(1):260-316
The adsorption characteristics of Pb(II) and Cd(II) onto colemanite ore waste (CW) from aqueous solution were investigated as a function of pH, adsorbent dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the adsorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The adsorption capacity of CW was found to be 33.6 mg/g and 29.7 mg/g for Pb(II) and Cd(II) ions, respectively. Analyte ions were desorbed from CW using both 1 M HCl and 1 M HNO3. The recovery for both metal ions was found to be higher than 95%. The mean adsorption energies evaluated using the D-R model indicated that the adsorption of Pb(II) and Cd(II) onto CW were taken place by chemisorption. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) showed that the adsorption of both metal ions was feasible, spontaneous and exothermic at 20-50 °C. Adsorption mechanisms were also investigated using the pseudo-first-order and pseudo-second-order kinetic models. The kinetic results showed that the adsorption of Pb(II) and Cd(II) onto CW followed well pseudo-second order kinetics.  相似文献   

13.
In this article, polyamide 6 (PA6)/clay nanocomposites, PA6/polyethylene grafted maleic anhydride (PE‐g‐MA) blends, and PA6/PE‐g‐MA/clay nanocomposites were prepared and their gasoline permeation behavior and some mechanical properties were investigated. In PA6/clay nanocomposites, cloisite 30B was used as nanoparticles, with weight percentages of 1, 3, and 5. The blends of PA6/PE‐g‐MA were prepared with PE‐g‐MA weight percents of 10, 20, and 30. All samples were prepared via melt mixing technique using a twin screw extruder. The results showed that the lowest gasoline permeation occurred when using 3 wt % of nanoclay in PA6/clay nanocomposites, and 10 wt % of PE‐g‐MA in PA6/PE‐g‐MA blends. Therefore, a sample of PA6/PE‐g‐MA/clay nanocomposite containing 3 wt % of nanoclay and 10 wt % of PE‐g‐MA was prepared and its gasoline permeation behavior was investigated. The results showed that the permeation amount of PA6/PE‐g‐MA/nanoclay was 0.41 g m?2 day?1, while this value was 0.46 g m?2 day?1 for both of PA6/3wt % clay nanocomposite and PA6/10 wt % PE‐g‐MA blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40150.  相似文献   

14.
Hydrogels for absorbing metal ions in wastewater have attracted more attentions in the environmental field especially for recent years. The removal efficiency of hydrogel adsorbents for eliminating metal ions is highly related with the effective contact between adsorbents and adsorbates. However, poor water absorption capacity of the hydrogel adsorbents would restrict on the expose of adsorption sites to the targeted subjects, causing undesirable removal ratio (RR) especially for metal ions at trace level. Thereby, the reported hydrogel adsorbents mainly focus on the removal of high content but not the trace level of metal ions so far. In this work, poly(acrylamide) (PAM)/poly(acrylic acid) (PAA)/Ca(OH)2 composite hydrogel is applied to adsorb trace metal ions. Swelling ratio of such PAM/PAA/Ca(OH)2 gel reaches 2,530 g/g, resulting in effective exposure of active sites and further expected RR for trace metal ions. The RRs of such adsorbent for Cu2+ (initial concentration C0 = 0.064 mg/L), Al3+ (C0 = 0.27 mg/L), Co2+ (C0 = 0.59 mg/L), Cr6+ (C0 = 0.52 mg/L), Mn2+ (C0 = 0.55 mg/L), Ni2+ (C0 = 0.59 mg/L), Zn2+ (C0 = 0.65 mg/L), Ag+ (C0 = 1.08 mg/L), and La3+ (C0 = 1.39 mg/L) are 56.6, 80.8, 41.3, 29.3, 34.6, 44.6, 55.9, 45.8, and 35.5%, respectively. This work broadens the application of hydrogel adsorbent for eliminating trace metal ions from polluted water.  相似文献   

15.
Poly(vinyl chloride)(PVC) and dioctyl phthalate (DOP) were mixed with 5 and 10 wt % of Cloisite Na+, Cloisite 30B or Cloisite 93A. The obtained nanocomposites were characterized by thermal analysis using a thermogravimetric analyzer which showed that addition of 5 wt % of nanoclay to PVC increased its thermal stability in the sequence: Cloisite Na+< Cloisite 93A< Cloisite 30B. The electrical conductivity of these composites was studied as a function of temperatures and showed that the conductivity of PVC was enhanced upon using 5 wt % of nanoclay in the sequence: Cloisite Na+< Cloisite 30B < Cloisite 93A. The activation energy of interaction of PVC with nanoclay was found to be lowest for the composite containing 5 wt % of nanoclay in the same sequence. The tensile strength, elongation (%), and Young's modulus were considerably enhanced upon increasing the clay content to 5 wt % in the sequence: Cloisite Na+< Cloisite 93A < Cloisite 30B. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study these nanocomposite structures, and it was found that the organoclay layers are homogeneously dispersed in the PVC matrix when 5 wt % of Cloisite 30B or Cloisite 93A was used. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The ability of poly(N-vinylimidazole) hydrogels to bind Cu(II), Co(II), Ni(II), Zn(II), Cd(II), Pb(II), Hg(II), Na(I) and Ca(II) cations, as well as uranyl, vanadium, rhenium, and molybdenum complexes, was studied by a batch equilibrium procedure using atomic absorption spectroscopy and UV-Vis spectrophotometry. The optimum pH for ion adsorption was determined in any case. The influence of the crosslinking degree of the hydrogel on the sorption kinetics and the sorption capacity at equilibrium were also studied. Sorption from the binary mixture Cu(II) + U(VI) was also analyzed at the optimum pH. Elution of the ions adsorbed from single and binary solutions was achieved in all cases. A selective desorption of loaded hydrogels with two types of ions was attained. The general conclusion is that poly(N-vinylimidazole) hydrogels are excellent materials for retention of all the ions studied here [except for Pb(II), Na(I), and Ca(II)]. The elution, which can be selective, allows regeneration of the hydrogel. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1109–1118, 1998  相似文献   

17.
Heavy metals (Pb (II), Hg (II), and Cd (II)) in ore dressing wastewater (ODW) were selectively separated by shear-induced dissociation coupling with ultrafiltration (SID-UF) using polyacrylic acid sodium (PAAS) as complexant. Metals (Pb (II), Hg (II), and Cd (II)) were complexed with PAAS and rejected by ultrafiltration membrane at first. The effects of pH and P/M (mass ratio of polymer to metal ions) on the rejection were investigated and the suitable pH and P/M were obtained, at which the rejection arrived at almost 100%. For the recovery of metals and polymer complexant from the retained, the shear stabilities of PAA-metal (PAA-M) complexes were studied, and the critical shear rates of PAA-Pb, PAA-Hg, and PAA-Cd complexes at pH 7.0 were 2.72 × 10,5 2.42 × 105 and 2.01 × 105 s−1, respectively. According to the difference of the critical shear rates of the PAA-M complexes, SID-UF was used to recover Pb (II), Hg (II), Cd (II) and PAAS. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48854.  相似文献   

18.
《分离科学与技术》2012,47(12):2281-2293
Abstract

The adsorbing colloid flotation of Pb(II), Cd(II), and Cu(II) with ferric hydroxide floc and the mixed surfactant system sodium dodecylphosphate (SDP)/n-hexanol was investigated. Good removals of Pb and Cu were obtained; removal of Cd was less satisfactory. The effects of interfering anions (sulfate, oxalate, silicate, phosphate) were studied; higher concentrations of these ions could be tolerated with SDP/n-hexanol than with sodium dodecylsulfate. Measurements of the cmc of SDP were made; low solubility prevented determinations in the pH range 4–8.5.  相似文献   

19.
Liquid‐crystalline (LC) hydrogels were obtained from an aqueous solution of poly(p‐phenylene‐sulfoterephthalamide) (PPST) by the addition of calcium ions (Ca2+). The critical hydrogel formation ratio of Ca2+ to the sulfonic acid group in PPST (crtRCa = [Ca2+]/[ ]) depended on the concentration of PPST, and was independent of the molecular weight of PPST. When the LC hydrogel was prepared at a concentration of 0.5 wt % and crtRCa = 0.6, and was exposed to ammonium carbonate vapor for 96 h, all Ca2+ in the LC hydrogel were converted into calcite crystals. The alternate soaking process for the LC hydrogel induced the formation of two mesocrystal morphologies on and in the Ca2+ cross‐linked LC hydrogel. Plate‐like calcite mesocrystals grew at the hydrogel/solution interface and cubic mesocrystals were present in the inner space of the hydrogel, thus composites with some ordered structures of LC matrix and CaCO3 have been prepared through in situ mineralization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41455.  相似文献   

20.
A method is presented for surface encapsulation of nano-Fe3O4 by o-phenylenediamine via cross-linking using formaldehyde and glutaraldhyde for the formation of two newly designed magnetic nano-sorbents. These have been characterized by FT-IR, TGA, and SEM and maintained the magnetic and thermal stability characters. The metal capacity values of Pb(II) and Cd(II) have been optimized in presence of different physico-chemical parameters and confirmed the superior selectivity for Pb(II). Maximum capacity values of Pb(II) (7000-10000 ± 250-675 µmol g?1) and Cd(II) (1500-2250 ± 30-75 µmol g?1) at optimum conditions and excellent extraction values (94.10-100.0 ± 1.2-3.5%) from industrial wastewater have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号