首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(methyl methacrylate)/poly(ethylene oxide) (90/10) blend containing various contents of functionalized graphene was prepared through solution technique and characterized to investigate the effects of functionalized graphene content on mechanical, thermal, and electrical properties of the nanocomposites. Infrared results revealed the interaction between matrix and functionalized graphene. Electron microscopy images of the nanocomposites exhibited a good dispersion of functionalized graphene nanosheets in the blend. The incorporation of functionalized graphene significantly increased the thermal stability and mechanical properties of poly(methyl methacrylate)/poly(ethylene oxide) blend. At electrical percolation threshold achieved at functionalized graphene loading of 4.27?wt%, the conductivity of the nanocomposites was increased by more than eight orders of magnitude.  相似文献   

2.
In this study, we report an effective method to fabricate high‐performance polyimide (PI)‐based nanocomposites using 3‐aminopropyltriethoxysilane functionalized graphene oxide (APTSi‐GO) as the reinforcing filler. APTSi‐GO nanosheets exhibit good dispersibility and compatibility with the polymer matrix because of the strong interfacial covalent interactions. PI‐based nanocomposites with different loadings of functionalized graphene nanosheets (FGNS) were prepared by in situ polymerization and thermal imidization. The mechanical performance, thermal stability, and electrical conductivity of the FGNS/PI nanocomposites are significantly improved compared with those of pure PI by adding only a small amount of FGNS. For example, a 79% improvement in the tensile strength and a 132% increase in the tensile modulus are achieved by adding 1.5 wt % FGNS. The electrical and thermal conductivities of 1.5 wt % FGNS/PI are 2.6 × 10?3 S/m and 0.321 W/m·K, respectively, which are ~1010 and two times higher than those of pure PI. Furthermore, the incorporation of graphene significantly improves the glass‐transition temperature and thermal stability. The success of this approach provides a good rationale for developing multifunctional and high‐performance PI‐based composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42724.  相似文献   

3.
Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15–20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47792.  相似文献   

4.
Conventional polymer blending has a shortcoming in conductivity characteristic. This research addresses the preparation of conductive thermoplastic natural rubber (TPNR) blends with graphene nanoplates (GNPs)/polyaniline (PANI) through melt blending using an internal mixer. The effect of PANI content (10, 20, 30, and 40 wt %) on the mechanical and thermal properties, thermal and electrical conductivities, and morphology observation of the TPNR/GNPs/PANI nanocomposites was investigated. The results showed that the tensile and impact properties as well as thermal conductivity of nanocomposite had improved with the incorporation of 3 wt % of GNPs and 20 wt % of PANI as compared to neat TPNR and reduced with further increase of the PANI content. It was observed that the GNPs and PANI acted as a critical component to improve the thermal stability and electrical conductivity of the TPNR/GNPs/PANI nanocomposites. The most improved conductivity of 5.22 E-5 S/cm was observed at 3 wt % GNPs and 40 wt % PANI. Variable-pressure scanning electron microscopy micrograph revealed the good interaction and distribution of GNPs and PANI within TPNR matrix at PANI loadings lower than 30 wt %. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48873.  相似文献   

5.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

6.
Multifunctional high performance functionalized graphene sheets (FGSs) based epoxy nanocomposites were investigated to understand the feasibility that these FGSs‐epoxy nanocomposites can be applied to cryotank composite applications. The FGSs were successfully synthesized from graphite flakes through preparing graphite oxides by oxidizing graphite flakes first and next, thermally exfoliating the formed graphite oxides. These high performance FGSs were next incorporated into epoxy matrix resin system to generate the uniformly dispersed FGSs reinforced epoxy nanocomposites. The resultant FGSs‐epoxy nanocomposites significantly enhanced resin strength and toughness about 30–80% and 200–700% at room and low temperatures of −130°C, respectively, and reduced the coefficient of thermal expansion (CTE) of polymer resin at both below and above Tg about 25% at loading of 1.6 wt% FGSs, and increased Tg of polymer resin about 8°C at low loading of 0.4 wt% FGSs without deteriorating their good processability. We found that these significantly improved properties of FGSs‐reinforced epoxy nanocomposite were closely associated with high surface area and wrinkled structure of the FGSs. The further optimization will result the high performance FGSs‐epoxy nanocomposite suitable for use in the next generation multifunctional cryotank carbon fiber reinforced polymer (CFRP) composite applications, where better microcrack resistance and mechanical and dimensional stability are needed. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

8.
Electrical, mechanical, and thermal properties of the poly(methyl methacrylate) (PMMA) composites containing functionalized multiwalled carbon nanotubes (f‐MWCNTs) and reduced graphene oxide (rGO) hybrid nanofillers have been investigated. The observed electrical percolation threshold of FHC is 0.8 wt% with maximum conductivity of 1.21 × 10?3 S/cm at 4 wt% of f‐MWCNTs. The electrical transport mechanism and magneto resistance studied of hybrid composites have also been investigated. Progressive addition of f‐MWCNTs in rGO/PMMA composite results increase in mechanical (tensile strength and Young's modulus) and thermal (thermal stability) properties of f‐MWCNTs‐rGO/PMMA hybrid nanocomposites (FHC). The increased mechanical properties are due to the efficient load transfer from PMMA matrix to f‐MWCNTs and rGO through better chemical interaction. The strong interaction between PMMA and f‐MWCNTs‐rGO in FHC is the main cause for improved thermal stability. POLYM. ENG. SCI., 59:1075–1083, 2019. © 2019 Society of Plastics Engineers  相似文献   

9.
In this work, polyaniline nanorod adsorbed on reduced graphene oxide (P@G) hybrid filler was prepared via in situ polymerization of aniline monomer in the presence of reduced graphene oxide as template. Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy images revealed the formation of P@G hybrid. The P@G hybrid was dispersed in dichlorobenzene and then introduced into epoxy resin at different loadings. The epoxy nanocomposites containing 9 wt% P@G hybrids (E/P@G9) exhibited a maximum DC conductivity of 1.34 × 10−5 S/cm that is eight orders higher compared to pure epoxy. At 103 Hz, a dielectric constant (ε′) of 163 was attained for E/P@G9, nearly 34 times higher than pure epoxy. A percolation threshold of 4 vol% was observed for ε′. Dynamic mechanical studies showed that significant enhancement in storage modulus values were exhibited for 3 and 5 wt% of hybrids. The glass transition temperature showed a maximum shift of 10°C to higher temperatures at 3 wt% loading of P@G hybrids (E/P@G3). The tensile strength, Young's modulus, and impact strength of the E/P@G3 nanocomposites enhanced by 19.7, 72, and 12%, respectively. The thermal stability of the epoxy nanocomposites also enhanced with the addition of P@G hybrid.  相似文献   

10.
Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
In the present study SU8 nanocomposites were prepared by incorporating graphene oxide (GO ), and its effect on the UV curing kinetics, morphology, electrical, hardness and thermal properties of the nanocomposites were investigated at different loading levels of GO (0.1 ? 3 wt%). Studying the reaction kinetics of the UV curing process by means of real‐time infrared spectroscopy showed that the polymerization rate and the final conversion of epoxy groups was related to the loading level of GO in the nanocomposites. An autocatalytic kinetics model of the curing reaction confirmed the effect of GO nanoparticles on the curing rate constant (k ), the order of the initiation reaction (m ) and the ultimate conversion of the UV ‐cured nanocomposites. Appropriate experimental observations indicated that dispersion of GO within the resin plays a critical role on the cure kinetics and final conversion. The results of the kinetics modeling and morphological observations showed that the curing rate constant of the nanocomposites is highly dependent on the GO content and its dispersion state, indicating that GO prevents epoxy resin crosslinking by photoinitator deactivation. Moreover, oxygen functionalities, such as hydroxyl and carboxyl groups, on the surface of GO facilitate interfacial interactions between epoxy groups from the matrix and GO . Electrical conductivity measurements demonstrated that the UV ‐induced photo‐cured GO filled resins are conductive SU8 nanocomposites. It was observed that the thermal stability of the nanocomposites is enhanced due to the dispersion of GO in the matrix. Moreover, the microhardness analysis showed that addition of GO to neat SU8 increases the mechanical hardness of the nanocomposite. © 2016 Society of Chemical Industry  相似文献   

12.
Epoxy polymers, having good mechanical properties and thermal stability, are often used for engineering applications. Their properties can be further enhanced by the addition of iron oxide (Fe3O4) nanoparticles (NPs) as fillers to the resin. In this study, pristine Fe3O4 NPs were functionalized with polydopamine (PDA), (3-glycidoxypropyl)trimethoxysilane (GPTMS), and (3-aminopropyl)trimethoxysilane (APTES). X-ray diffraction and scanning electron microscopy (SEM) were used to study any changes in the crystal structure and size of the NPs while Fourier-Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) were used to ensure the presence of functional groups on the surface. The mechanical properties of the Fe3O4-based nanocomposites generally improved except when reinforced with Fe3O4/PDA. The maximum improvement in tensile strength (∼34%) and fracture toughness (∼13%) were observed for pristine Fe3O4-based nanocomposites. Dynamic mechanical analysis (DMA) showed that the use of any of the treated NPs improved the material's initial storage modulus and had a substantial impact on its dissipation potential. Also, it was observed that the glass transition temperature measurements by DMA and differential scanning calorimetry were below that of pure epoxy. SEM of the cracked surfaces shows that the incorporation of any NPs leads to an enhancement in its thermal and mechanical properties.  相似文献   

13.
The effects of poly(vinyl butyral) (PVB) and acid‐functionalized multiwalled carbon nanotube modification on the thermal and mechanical properties of novolac epoxy nanocomposites were investigated. The nanocomposite containing 1.5 wt % PVB and 0.1 wt % functionalized carbon nanotubes showed an increment of about 15°C in the peak degradation temperature compared to the neat novolac epoxy. The glass‐transition temperature of the novolac epoxy decreased with increasing PVB content but increased with an increase in the functionalized carbon nanotube concentration. The nanocomposites showed a lower tensile strength compared to the neat novolac epoxy; however, the elongation at break improved gradually with increasing PVB content. Maximum elongation and impact strength values of 7.4% and 17.0 kJ/m2 were achieved in the nanocomposite containing 1.5 wt % PVB and 0.25 wt % functionalized carbon nanotubes. The fractured surface morphology was examined with field emission scanning electron microscopy, and correlated with the mechanical properties. The functionalized carbon nanotubes showed preferential accumulation in the PVB phase beyond 0.25 wt % loading. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43333.  相似文献   

14.
The intercrosslinked networks of unsaturated polyester (UP) toughened epoxy–clay hybrid nanocomposites have been developed. Epoxy resin (DGEBA) was toughened with 5, 10 and 15% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4′-diaminodiphenylmethane as a curing agent at appropriate conditions. The chemical reaction of unsaturated polyester with the epoxy resin was carried out thermally in presence of benzoyl peroxide-radical initiator and the resulting product was analyzed by FT-IR spectra. Epoxy and unsaturated polyester toughened epoxy systems were further modified with 1, 3 and 5% (by wt) of organophilic montmorillonite (MMT) clay. Clay filled hybrid UP-epoxy matrices, developed in the form of castings were characterized for their thermal and mechanical properties. Thermal behaviour of the matrices was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data resulted from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improved the thermal stability and impact strength to an appreciable extent. The impact strength of 3% clay filled epoxy system was increased by 19.2% compared to that of unmodified epoxy resin system. However, the introduction of both UP and organophilic MMT clay into epoxy resin enhanced the values of mechanical properties and thermal stability according to their percentage content. The impact strength of 3% clay filled 10% UP toughened epoxy system was increased by 26.3% compared to that of unmodified epoxy system. The intercalated nanocomposites exhibited higher dynamic modulus (from 3,072 to 3,820 MPa) than unmodified epoxy resin. From the X-ray diffraction (XRD) analysis, it was observed that the presence of d 001 reflections of the organophilic MMT clay in the cured product indicated the development of intercalated clay structure which in turn confirmed the formation of intercalated nanocomposites. The homogeneous morphologies of the UP toughened epoxy and UP toughened epoxy–clay hybrid systems were ascertained from scanning electron microscope (SEM).  相似文献   

15.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

16.
Carbon nanofibers (CNFs) were functionalized by a multistage process including oxidation, reduction and silanization. The chemical modifications were examined by Fourier transform infrared spectroscopy, X‐ray photoelectron spectrometry, Raman spectroscopy and thermogravimetric analysis. The silanized CNFs were then added into an epoxy resin (EPON 828) to study the effect of the surface modification of CNFs on the properties of nanocomposites. For comparison, nanocomposites containing original unmodified CNFs were also investigated. Scanning electron microscopy indicates better dispersion of modified fibers in the epoxy polymer matrix; the mechanical and thermal properties of composites are also improved; the electrical conductivity of the composites is reduced. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Hollow glass microspheres (HGMs)/epoxy syntactic foam were reinforced by hybrid functionalized carbon nanotubes that were synthesized by simultaneous covalent and noncovalent functionalization of carbon nanotubes. The effect of hybrid functionalized carbon nanotubes on density, mechanical properties, and water absorption of HGMs/epoxy syntactic foam was studied. The study indicated that the dispersion of carbon nanotubes in epoxy resin can be improved by hybrid functionalization. The compression strength of syntactic foam reinforced by hybrid functionalized carbon nanotubes was significantly enhanced. The maximum compressive strength of syntactic foam corresponding to chitosan modified carbon nanotubes approached 60 MPa. Hybrid functionalized carbon nanotubes had little effect on the water absorption ability of syntactic foam, and was less than 1%. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48586.  相似文献   

18.
In this work, the small molecule with double-phosphaphenanthrene structure was successfully grafted on the surface of graphene oxide (GO), which is called functionalized graphene oxide (FGO). The introduction of FGO improved the poor interfacial compatibility between graphene and epoxy matrix. And FGO could be used as the highly effective flame retardant. The thermogravimetric analysis results showed a significant improvement in the char yield of cured FGO/EP. When the content of FGO was 3 wt %, the limiting oxygen index value reached 30.4%. At the same time, the three-point bending and thermomechanical tests confirmed that the mechanical properties of the epoxy resin composites were improved. Based on the char analyses of SEM images and Raman spectroscopy, the flame retardant could promote the formation of a stable carbon layer. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47710.  相似文献   

19.
Woven glass‐fiber‐reinforced cyanate ester/epoxy composites modified with plasma‐functionalized multiwalled carbon nanotubes (MWCNTs) were prepared. The mechanical, thermal, and electrical properties of the composites were investigated at different temperatures. The results show that the interlaminar shear strength, thermal conductivity, and electrical conductivity of the composites at room temperature and the cryogenic temperatures were enhanced simultaneously by the incorporation of MWCNTs, whereas the nonconductive behavior of the composites as electrical insulating materials was not changed. Meanwhile, the reinforcing mechanism was also examined on the basis of the microstructure of the composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41418.  相似文献   

20.
Plant oil based alkyd resin was prepared from jatropha oil and blended with epoxy resin. Subsequently, alkyd/epoxy/NiO nanocomposites with different wt % of NiO nanoparticles have been prepared by mechanical mixing of the designed components. The structure, morphology, and performance characteristics of the nanocomposites were studied by UV‐visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and universal testing machine (UTM). The alkyd/epoxy/NiO nanocomposites showed the gradual increase in thermal stability with increasing NiO content. With 3 wt % NiO content the tensile strength of the nanocomposite increased by 19 MPa (more than twofold) when compared with the pristine polymer. Limiting oxygen index (LOI) value of the nanocomposites indicate that the incorporation of NiO nanoparticles even in 1 wt % can greatly improves the flame retardant property of the nanocomposites. This study confirms the strong influence of NiO nanoparticles on the thermal, mechanical, and flame retardant properties of the alkyd/epoxy/NiO nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41490.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号