首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide (CO2) mass transfer processes are analyzed in hybrid equipment which involves a zeolitic membrane and a physical or chemical solvent. This separation device was chosen because the membrane can be used to produce a stream of higher CO2 concentration to be treated by gas‐liquid absorption. The analysis of the mass transfer behavior of this gas through the solid phase is an important step before more complicated gas streams are applied. The combined use of both techniques can improve the global separation process because they allow performing a previous separation with a positive effect on the cost of the later separation operations. The influence of the liquid phase nature used in one chamber of the membrane contactor upon CO2 global mass transfer is analyzed. Also the effect caused by the absorption regime, liquid and gas flow rates, and the pressure corresponding to the gas chamber on CO2 mass transfer is studied to evaluate the importance of each variable.  相似文献   

2.
沙焱  杨林军  陈浩  瞿如敏 《化工学报》2013,64(4):1293-1299
由于燃煤烟气中细颗粒物和气态污染物难以完全脱除,同时经湿法脱硫后烟气中水汽接近饱和状态,因此,有必要揭示细颗粒物及共存气态组分对膜吸收CO2的影响。采用燃煤热态试验装置,考察了燃煤烟气中细颗粒物、SO2、水汽对膜吸收CO2性能的影响,并进行了实际燃煤湿法脱硫净烟气环境下的膜吸收CO2试验。结果表明:细颗粒物随烟气通过膜组件后,部分细颗粒物可被膜截留,沉积于膜表面,导致膜吸收CO2效率下降,其影响程度随细颗粒物浓度的降低而减弱,与细颗粒物物性有一定关系,通过有效降低烟气中细颗粒物浓度,可显著延长膜的稳定运行时间;SO2的存在会与CO2产生竞争吸收现象,但因烟气中SO2含量远低于CO2,对CO2吸收效率影响不明显;对于水汽,只需在运行一段时间后对膜组件作气体干燥反吹,可基本维持膜组件的稳定运行。  相似文献   

3.
In this study, removal of SO2 from gas stream was carried out by using microporous polyvinylidene fluoride (PVDF) asymmetric hollow fiber membrane modules as gas-liquid contactor. The asymmetric hollow fiber membranes used in this study were prepared polyvinylidene fluoride by a wet phase inversion method. Water was used as an internal coagulant and external coagulation bath for all spinning runs. An aqueous solution containing 0.02 M NaOH was used as the absorbent. This study attempts to assess the influence of PEG additive, absorbent flow rate, SO2 concentration, gas flow rate and gas flow direction on the SO2 removal efficiency and overall mass transfer coefficient. The effect of liquid flow rate on SO2 removal efficiency shows that at very low liquid flow rate, the NaOH available at the membrane surface for reacting with SO2 is limited due to the liquid phase resistance. As liquid flow rate is above the minimum flow rate which overcomes the liquid phase resistance, the SO2 absorption rate is controlled by resistance in the gas phase and the membrane. The SO2 absorption rate with inlet SO2 concentration was sharply increased by using hollow fiber membranes compared to a conventional wetted wall column because the former has higher gas liquid contacting area than the latter. The mass transfer coefficient is independent of pressure. When the gas mixture was fed in the shell side, the removal efficiency of SO2 declined because of channeling problems on the shell side. Also, the addition of PEG in polymer dopes increased SO2 removal efficiency. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

4.
The performance of non-porous silicone rubber and microporous hydrophobic polypropylene hollow fibre membranes coupled with liquid absorbent were assessed for the removal of SO2; from a gas stream. This approach combines the advantages of absorption technology (high selectivity) with membrane systems (compactness of equipment). The advantages of such gas absorption membranes were evident in the increased selectivities of both membranes. A mathematical model which incorporates the effective permeabilities of the gases has been developed to simulate the separation process. Numerical simulations agreed well with the experiment. Further investigations were carried out to study the combined removal of CO2 and SO2 and any possible interactive effects of these gases during absorption in these contactors.  相似文献   

5.
BACKGROUND: Removal of sulfur dioxide from gas emissions by selective absorption is a common method to separate and concentrate sulfur dioxide and to reduce air pollution and environmental risks. N,N‐dimethylaniline is an organic solvent used in some industrial applications for its sulfur dioxide affinity, leading to a regenerative process. However, the use of scrubbers and equipment in which direct contact between gas and liquid takes place leads to solvent losses due to evaporation and drops dragging. RESULTS: In this work, an innovative procedure based on non‐dispersive absorption in a ceramic hollow fibre membrane contactor was studied in order to avoid drops dragging. The absorption efficiency ranged between 40 and 50%, showing the technical viability of the process. The sulfur dioxide flux through the membrane has a linear relationship with the concentration of SO2 in the gas stream and an overall mass transfer coefficient Koverall = (1.10 ± 0.11) × 10?5 m s?1 has been obtained. CONCLUSIONS: The mass transfer behaviour of a ceramic hollow fibre membrane contactor for sulfur dioxide non‐dispersive absorption in N,N‐dimethylaniline has been studied. The main resistance is found to be the ceramic membrane and the effective diffusivity has been inferred. The mass transfer model and parameters allow the evaluation of equipment design for technical applications. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
Polyamide (PA) NF membranes are synthesized on a hollow fiber support by the interfacial polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC). Then, GO is coated on the PA layer to decorate the NF membrane surface (denoted GO/PA-NF). This strategy aims to improve the hydrophilicity, chlorine resistance and separation stability of the membrane. The optimization, chemical composition, morphology, and hydrophilicity of the synthesized GO/PA-NF membrane are characterized. Results indicate that the optimized GO/PA-NF in terms of rejection rate and flux are with 0.05 wt% GO. The rejection of GO/PA-NF for Na2SO4 and MgSO4 is 99.4% and 96.9%, respectively. Even if the GO/PA-NF is immersed in 1000 ppm NaClO solution for 48 h, the NF membrane still maintains stable salt rejection. The developed NF membranes exhibit excellent treatment performance on dying wastewater. The permeate flux and rejection of GO/PA-NF toward Congo red solution are determined to be 44.2 L/m2h and 100%, respectively. Compared with the PA membrane, GO/PA-NF presents a higher rejection for Na2SO4 (99.4%) and a lower rejection for NaCl (less than 20%), which shows that the NF membranes have a better divalent/monovalent salt separation performance. This study highlights the superior performance of GO/PA-NF and shows its high potential for application in wastewater treatment.  相似文献   

7.
聚四氟乙烯膜气体吸收数学模型和孔隙率的影响   总被引:2,自引:0,他引:2  
膜吸收是将膜分离与传统的吸收技术相结合的一种新型分离技术。在这些过程中经常使用多孔膜,多孔膜对过程的传质性能有一定的影响。对不同孔隙率的微孔聚四氟乙烯(PTFE)疏水性平板膜的膜气体吸收过程中液相传质性能进行了实验研究。当采用去离子水-CO2吸收体系时,多孔膜的孔隙率对液相传质性能没有影响;当采用NaOH水溶液-CO2吸收体系时,多孔膜的孔隙率对液相传质性能有明显的影响。在相同流速下,孔隙率大的膜液相传质系数高于孔隙率小的膜。以双膜理论为指导,建立了多孔膜气体吸收过程中液相传质模型。用该模型描述多孔膜孔隙率对液相传质系数的影响,其结果与实验数据具有良好的一致性。  相似文献   

8.
It is important to develop an energy- and cost-efficient method of concentrating phosphoric acid because it is widely used in several industries. Three different ceramic membranes, namely, a silicon carbide (SiC) membrane, a TiO2-coated SiC membrane, and a sandwich membrane of TiO2 between SiC, were successfully applied for the selective separation of water from spent phosphoric acid. SiC was selected as raw material, TiO2 as supporting material. The membrane was characterized by various instruments to check all parameters. Using the solution diffusion, statistical modeling of these membranes was performed and the membrane parameters, such as membrane diffusivity and mass transfer coefficient, were calculated. By reducing the porosity of the membrane, the desired separation can be improved.  相似文献   

9.
The separation of acetylene from a gas mixture was investigated using a polytetrafluoroethylene hollow‐fiber membrane contactor and 1‐methyl‐2‐pyrrolidinone as absorbent. The effects of the gas velocity, the liquid velocity, the feed gas concentration, and the module length on the acetylene mass transfer were investigated. The results showed that the acetylene mass transfer flux increased with increasing liquid velocity, gas velocity, and feed gas concentration, but decreased with increasing membrane module length. A mathematical model was used to predict the wetting extent of the membrane and the mass transfer resistance in the acetylene mass transfer process. The wetting extent of the membrane was found to increase with increasing liquid velocity and to be effectively restrained with increasing gas velocity. The liquid phase resistance and the wetted‐membrane phase resistance controlled the acetylene mass transfer in the acetylene absorption process. The acetylene absorption efficiency was maintained at 90 % for 114 h of the C2H2 membrane absorption–thermal desorption cycle process.  相似文献   

10.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

11.
Room‐temperature ionic liquids serve as alternative solvents for volatile organic compounds in liquid‐liquid extraction and liquid membrane separation. 1‐Butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim][BF4]) was applied for extraction and supported ionic liquid membranes (SILMs) to separate toluene and n‐heptane. A high separation factor of toluene was achieved due to the strong interaction between ionic liquid cations and toluene. The mass transfer performance of the SILM process was enhanced by higher operating temperature. With the increase of initial toluene concentration in the feed phase, the mass transfer flux and removal efficiency of the SILM process were improved, while the separation factor decreased. The mass transfer flux was growing with the increase of flow rate at both sides. The SILM process was stable over a long time period due to the high viscosity and low volatility of [Bmim][BF4].  相似文献   

12.
Eight kinds of flat membranes with different micro-structures were chosen to carry out the membrane absorption experiments with CO2 and de-ionized water or 0.1 mol·L−1 NaOH solution as the experimental system. According to experimental results, the membrane pores shape (stretched pore and cylinder pore) and membrane thickness do not affect the membrane absorption process, and the membrane porosity has only little influence on membrane absorption process for slow mass transfer system. However, the influence of porosity on the membrane absorption process became visible for fast mass transfer system. Moreover, the mass transfer behavior near the membrane surface on liquid side was studied. The results show that the influence of membrane porosity on mass transfer relates to flow condition, absorption system and distance between micro-pores, etc. __________ Translated from Journal of Chemical Engineering of Chinese Universities, 2007, 21(1): 14–19 [译自: 高校化学工程学报]  相似文献   

13.
Porous PVDF-hydrophobic montmorillonite (MMT) mixed matrix membranes (MMMs) were fabricated via wet spinning method and used in membrane gas absorption process. The effects of hydrophobic MMT nano-clay loadings (1, 3 and 5 wt% of polymer) on the structure and performance were investigated. The fabricated membranes showed both finger-like and sponge-like structure with an increase in the length of finger-like pores in their cross-section, which resulted in higher permeability and lower mass transfer resistance compared to plain PVDF membrane. Also, significant improvements for surface hydrophobicity, critical entry pressure of water and porosity with the addition of filler were observed. The CO2 absorption test was conducted through the gas–liquid membrane contactor and demonstrated a significant improvement in the CO2 flux with MMT loading and the membrane with 5 wt% MMT presented highest performance. For example, at the liquid water velocity of 0.5 m s−1, CO2 flux of the MMM with 5 wt% MMT of 9.73 × 10−4 mol m−2 s−1 was approximately 56% higher than the PVDF membrane without nano-filler. In conclusion, MMMs with improved absorption properties can be a promising candidate for CO2 absorption and separation processes through membrane contactors.  相似文献   

14.
The wetting resistance of poly(vinylidene fluoride) (PVDF) membrane is a critical factor which determines the carbon dioxide (CO2) absorption performance of the gas–liquid membrane contactors. In this study, the composite PVDF–polytetrafluoroethylene (PTFE) hollow fiber membranes were fabricated through dry-jet wet phase-inversion method by dispersing PTFE nanoparticles into PVDF solution and adopting phosphoric acid as nonsolvent additive. Compared with the PVDF membrane, the composite membranes presented higher CO2 absorption flux due to their higher effective surface porosity and surface hydrophobicity. The composite membrane with addition of 5 wt % PTFE in the dope gained the optimum CO2 absorption flux of 9.84 × 10−4 and 2.02 × 10−3 mol m−2 s−1 at an inlet gas (CO2/N2 = 19/81, v/v) flow rate of 100 mL min−1 by using distilled water and aqueous diethanolamine solution, respectively. Moreover, the 5% PTFE membrane showed better long-term stability than the PVDF membrane regardless of different types of absorbent, indicating that polymer blending demonstrates great potential for gas separation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47767.  相似文献   

15.
Four kinds of thin-film composite (TFC) membranes were prepared via interfacial polymerization using diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and piperazidine (PIP) as water-soluble monomer, and trimesoyl chloride (TMC) as organic-soluble monomer. The surface chemical features of the resultant membranes were confirmed by contact angle measurement and Fourier transform infrared spectroscopy (FTIR). The membrane morphology and surface charges were investigated through Scanning electronic microscopy (SEM) and Zeta potential, respectively. Salt rejection was used to evaluate the separation performance of the four kinds of TFC membranes. The results showed that all the four kinds of TFC membranes exhibited typical negatively charged nanofiltration membrane characteristics. The salt rejections followed the sequence: Na2SO4 > MgSO4 > MgCl2 and the rejection of Na2SO4 was all over 80%. It was also found that the solubility of water-soluble monomer in organic solvent played an important role in manipulating the membrane structure, charge properties and thus the separation performance.  相似文献   

16.
《分离科学与技术》2012,47(16):2449-2458
Membrane gas-solvent contactors have received much attention for CO2 absorption, as the approach incorporates advantages from both solvent absorption and membrane gas separation. This study reports on pilot plant trials of three membrane contactors for the separation of CO2 from flue gas. The contactors were porous polypropylene (PP), porous polytetrafluoroethylene (PTFE), and non-porous polydimethylsiloxane (PDMS), with the solvent PuraTreatTM FTM. To enable performance comparison, laboratory measurements based on a gas mixture of 10% CO2 in N2 were also undertaken on the same contactor–solvent systems. It was found that the PP contactor experienced significant pore wetting in both laboratory and pilot plant studies. In contrast, the PTFE contactor experienced only minor pore wetting in the laboratory. However, in the pilot plant trial of the PTFE contactor extensive pore wetting was observed, and the overall mass transfer coefficient measured was comparable with the PP contactor. The non-porous PDMS contactor had an overall mass transfer coefficient two orders of magnitude less than the PP contactor, due to the greater mass transfer resistance of the polymeric film. However, the non-porous membrane does not experience pore wetting, which resulted in the overall mass transfer coefficient being similar for both laboratory and pilot plant measurements.  相似文献   

17.
Catalytic membrane reactors based on oxygen-permeable membranes are recently studied for hydrogen separation because their hydrogen separation rates and separation factors are comparable to those of Pd-based membranes. New membrane materials with high performance and good tolerance to CO2 and H2S impurities are highly desired. In this work, a new membrane material Ce0.85Sm0.15O1.925–Sr2Fe1.5Mo0.5O6-δ (SDC–SFM) was prepared for hydrogen separation. It exhibits high conductivities at low oxygen partial pressures, which is benefit to electron transfer and ion diffusion. A high hydrogen separation rate of 6.6 mL cm−2 min−1 was obtained on a 0.5-mm-thick membrane coated with Ni/SDC catalyst at 900°C. The membrane reactor was operated steadily for 532 h under atmospheres containing CO2 and H2S impurities. Various characterizations reveal that SDC–SFM has good stability in the membrane reactor for hydrogen separation. All facts confirm that SDC–SFM is promising for hydrogen separation in practical applications. © 2018 American Institute of Chemical Engineers AIChE J, 65: 1088–1096, 2019  相似文献   

18.
    
The further growth of the success of membrane based operations in unusual areas depends on the development of new membranes with tunable properties and or capable to withstand severe thermal, chemical and mechanical environments. Poly(organophosphazene)s (POPs) may give an important contribution for the preparation of such new membranes. In this paper the applications of POP materials in ultrafiltration (UF), nanofiltration (NF), pervaporation (PV), vapor permeation (VP) and gas separation (GS) are reviewed, and some perspectives for future developments are outlined. Interesting results obtained with POP UF membranes indicate that they might be applied in the treatment of organic solvents or aggressive streams or also for the construction of membrane contactors. However, the versatile and tunable properties of POPs can be fully exploited in membranes whose transport and separation mechanisms rely on differences in solubility and mobility of the feed species to be separated (i.e., NI, PV, VP, and GS). POP based NF membranes have been used for water potabilization and the separation of organic dies fromi-PrOH. The research work carried out in industrial and academic laboratories, sponsored also by the US Department of Energy, has probably passed the turning point for the production of commercial PV and VP POP membranes for the separation of organies and or water from liquid and gaseous streams. Good results were obtained in the separation of acidic species (SO3, H2S, CO2) from permanent gases with dense POP membranes. In perspective, the availability of new hybrid POP-inorganic materials makes it possible to bridge the gap between polymer and ceramic membranes, whose appealing capabilities are still to be explored. The outstanding versatile properties of POP can also be used for the fixation of catalytic centres on suitable membranes for the preparation of catalytic membrane reactors.Presented at the 1st Italian Workshop on Cyclo- and Poly(phosphazene) Materials, February, 15–16, 1996, at the CNR Research Area in Padova, Italy.  相似文献   

19.
《分离科学与技术》2012,47(6):859-866
Binary and ternary component mixed matrix membranes comprised of zeolite 4A and p-nitroaniline (pNA) in the polycarbonate (PC) matrix were prepared and appraised in gas separation. For comparison, homogenous membranes of PC and PC/pNA membranes were also investigated. The membranes were utilized to separate binary mixtures of CO2/CH4, H2/CH4, and CO2/N2. The effect of feed composition on the separation performance of membranes was investigated. Separation factors and ideal selectivities were similar for the PC membrane. A similar trend was also observed with the PC/pNA membrane. The separation factors of the PC/pNA membrane for CO2/CH4 were almost twice as high as those of the PC membrane regardless of the feed composition. The ideal selectivities were, however, higher than separation factors for PC/zeolite 4A and PC/pNA/zeolite 4A membranes. The PC/ pNA/zeolite 4A membrane has separation factors of 18 for 77% CO2/ 23% CH4 mixture, and 40 for 20% CO2/ 80% CH4 mixture, respectively. The separation factors of the mixed matrix membranes depended on the feed composition strongly. The PC/ pNA/zeolite 4A membrane had higher separation factors and lower permeabilities than the PC/zeolite 4A membrane. pNA assisted to eradicate partly the detrimental effects of interfacial voids and improved the molecular sieving effect of zeolite 4A dispersed in the PC.  相似文献   

20.
Gas separation membranes offer a cost-effective solution for capturing greenhouse gases, mitigating the global greenhouse effect. Ionic liquids (ILs) have emerged as one of the promising materials for greenhouse gas separation due to their strong affinity for CO2. In this study, we propose a laboratory-scale method for preparing IL–PVDF blend membranes with high CO2/N2 selectivity. The separation performance of the membranes was evaluated using a custom gas permeation measurement system. The effects of casting solution composition, solidification method, and film-forming processes on separation performance were experimental investigated, and the obtained experimental data were used to train a back propagation neural network (BPNN) optimized by the Gray Wolf Optimizer (GWO) algorithm. This hybrid GWO–BPNN model was utilized to predict separation membrane efficiency, optimize the film-forming process, and identify the optimal range of process parameters. Notably, the GWO–BPNN model demonstrated a 2.76% higher prediction accuracy compared to a standalone BPNN. The results indicated that the GWO–BPNN algorithm has a great potential to accurately predict membrane separation efficiency and apply in optimal membrane process design (OMPD), and this method can significantly reduce the number of experimental trials required to achieve OMPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号