首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The aim of this study was to investigate the effect of feed time of the oil phase on the average droplet size of Pickering emulsions produced in stirred tanks. Three types of impellers were tested: RT, up-pumping PBT (PBTU), and down-pumping PBT (PBTD). All the impellers were tested at two sizes, T/3 and T/2. All configurations were compared at constant tip speed, power per mass, and impeller Reynolds number. The droplet diameters were measured in Mastersizer® 3,000 (Malvern). The results showed that an increase in feed time causes a reduction in the average droplet size. At lower impeller speeds and higher feed times, the effect is more pronounced. It was found that some other geometric parameters also have an impact on the average droplet size.  相似文献   

2.
阴离子多聚糖修饰Pickering乳液的制备及表征   总被引:1,自引:0,他引:1  
为了提高淀粉纳米晶(SNC)与季铵盐壳聚糖(QCS)共同稳定的Pickering乳液在p H变化时的稳定性,以阴离子多聚糖海藻酸钠和果胶为原料,通过静电作用对乳液进行表面修饰,制得两种Pickering乳液。通过测定乳液粒径、Zeta电位和体外消化情况,对乳液的稳定性和消化特性进行了表征。结果显示:当水相中海藻酸钠和果胶质量分数均为0.1%(以水相为基准)时,修饰后的两种Pickering乳液在p H=2~7内均能保持粒径不变,且该乳液在25℃下放置90 d,粒径无变化,无乳析现象发生。此外,在体外模拟消化条件下,阴离子多聚糖的加入还能抑制Pickering乳液中油脂和淀粉的消化。  相似文献   

3.
为了探究固体粒子对乳液的稳定作用,采用L-赖氨酸作为催化剂合成纳米SiO2粒子,并用六甲基二硅胺烷(HMDS)对纳米SiO2粒子进行表面疏水改性,将经过HMDS改性后的纳米SiO2粒子作为稳定剂制备出Pickering乳液。通过粒径分析仪、场发射透射电子显微镜、FTIR、TG-DSC、接触角测量仪、光学显微镜、电导率仪分别对纳米SiO2的制备、表面改性和Pickering乳液的性能进行了表征。结果表明,成功合成出粒径小且形貌均一的硅球,具有疏水性的三甲基硅基成功接枝到纳米SiO2的表面;不同纳米SiO2浓度制备的Pickering乳液,发现随着SiO2浓度的增大,乳液的稳定性逐渐增强,乳液液滴直径呈现减小的趋势;不同油水比制备的Pickering乳液,发现随着油相体积的增大,乳液的稳定性呈现增大的趋势。  相似文献   

4.
Pickering乳液是指由微纳米固体粒子代替传统表面活性剂作为乳化剂而稳定的乳液,具有较强的稳定性和超高油/水界面,能够为多相界面反应和物质传输提供高效稳定的场所。Pickering乳液的乳滴结构和性质与固体颗粒的尺寸形貌及表面性质密不可分,通过调控固体颗粒本身或表面的性质可以赋予Pickering乳液特定的响应性功能,拓宽其应用领域。本文对近年来不同响应型(磁性、CO2、pH、光、温度等响应型)的Pickering乳液的主要研究成果进行了综述,重点介绍了Pickering乳液的稳定性原理、响应型Pickering乳液的制备方法和结构调控策略,以及近年来Pickering乳液在物质分离提取中的应用研究进展,最后对智能响应型Pickering乳液应用研究的发展趋势进行了展望。  相似文献   

5.
The rheological behavior of particle/oil suspensions and w/o Pickering emulsions consisting of water, 1‐dodecene and different fumed silica nanoparticles was investigated. The particles varied in hydrophobicity and specific surface area. The influence of particle concentration and water content on rheology was determined and the emulsion drop size distributions were examined. Emulsions with different drop sizes were created by either varying the particle concentration or the water content. It was found that the particles in the continuous oil phase and not the drop size distribution seem to be the major influencing factor on the Pickering emulsion rheology.  相似文献   

6.
The performance of a membrane emulsification unit, using flat membranes in a stirred tank, has been examined by dimensional analysis. The dimensionless numbers were defined in terms of shear and membrane pore size. Dimensionless droplet size prediction models based on simple force balances were used to select the most representative dimensionless numbers including operating parameters. Oil-in-water emulsions were produced with tailor-made metallic membranes with pore sizes of 30 and 50 μm. Results showed that monodisperse emulsions were produced with span values around 0.5, significantly lower than when a rotor-stator homogenizer is used. The influence of the selected operating parameters (impeller rotational speed, continuous phase viscosity and dispersed phase flux) on droplet size distribution was studied and experimental results were compared with droplet size prediction models. Impeller rotational speed and membrane pore size were the key parameters influencing emulsion droplet size and monodispersity. A correlation based on the Euler dimensionless number, including all the operating parameters is proposed.  相似文献   

7.
与传统表面活性剂稳定的乳液相比,固体纳米颗粒稳定的Pickering乳液具有较强的界面稳定性、多功能性、低毒性等优势,在生物医药领域具有较大的应用潜力。而相较于尺寸较大的微米级Pickering乳液,亚微米Pickering乳液具有更大的比表面积、更有效的递送效率,有望进一步拓展Pickering乳液在生物医药领域的应用。但由于Pickering乳液的制备影响因素众多,且相互制约,刚性的固体颗粒难以在较小的有限油水界面排布,增加了亚微米Pickering乳液的制备难度。本工作以制备稳定的亚微米Pickering乳液为研究目标,采用具有良好生物相容性的天然多糖–纤维素纳米晶(CNCs)为颗粒乳化剂,角鲨烯作为油相,考察了颗粒浓度、油水比例、水相成分、超声时间及频率对Pickering乳液粒径分布及稳定性的影响,最终得到了具有良好的储存稳定性和抗离心稳定性的粒径为638.7?8.40 nm的亚微米Pickering乳液(CNCs-PE)。通过激光共聚焦显微镜证实了CNCs吸附在油水界面,形成了Pickering乳液结构。利用CCK-8法评价了CNCs和CNCs-PE的细胞毒性,结果表明,两者都具有良好的细胞安全性。此外,将其用于吸附模型抗原OVA,吸附率达到约80%,且肌肉注射部位的切片结果也表明其注射安全性良好。此结果为亚微米Pickering乳液进一步研究提供了参考,并有望拓展CNCs稳定的亚微米Pickering乳液在生物医药领域的应用。  相似文献   

8.
In this article, a facile method for fabrication of core–shell nanocomposite microspheres with polystyrene (PS) as the core and halloysite nanotubes (HNTs) as the shell via Pickering suspension polymerization was introduced. Stable Pickering emulsions of styrene in water were prepared using HNTs without any modification as a particulate emulsifier. The size of the Pickering emulsions varied from 195.7 to 26.7?μm with the water phase volume fraction increasing from 33.3 to 90.9?%. The resulting Pickering emulsions with the water phase volume fraction of above 66.7?% were easily polymerized in situ at 70?°C without stirring. HNTs played an important role during polymerization and effectively acted as building blocks for creating organic–inorganic nanocomposite microspheres after polymerization. The sizes of PS/HNTs microspheres were roughly in accord with that of the corresponding emulsion droplets before polymerization. The effect of the water phase volume fraction on the stability of Pickering emulsions and the morphologies of nanocomposite microspheres was investigated by optical microscopy, confocal laser scanning microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and so on.  相似文献   

9.
将淀粉纳米晶(SNC)与带正电的季铵盐壳聚糖(QCS)复配,制备了稳定的Pickering乳液。通过FTIR、表/界面张力、流变仪、光学显微镜、荧光显微镜分别对QCS/SNC分散液Pickering乳液的性能进行表征。结果表明,QCS通过氢键作用和静电作用吸附在SNC颗粒表面,QCS的加入使SNC水溶液的分散性提高、表面张力和界面张力降低。随着QCS质量分数的增加,乳液粒径呈现先增大后减小又增大的趋势;当QCS的质量分数为0.4%时,QCS/SNC稳定的乳液粒径最小,且室温储存30 d后仍无乳析现象。  相似文献   

10.
A small (15 cm square) Davy McKee Combined Mixer Settler has been subjected to hydrodynamic and mass transfer experiments. These included measurements of pumping head, power dissipation, holdup, droplet size and mass transfer efficiency. It was found that the holdup in the dispersed region was in general not uniform, with slight dependence on agitator speed, phase flow rates, etc. The droplet sizes in the impeller region were correlated in terms of agitator speed and system properties. The mass transfer efficiency for the system water/n-butyric acid/kerosene was affected by agitator speed, overall retention time, and the direction of mass transfer (to or from the dispersed phase). However, it was substantially unaffected by the ratio of phases fed.  相似文献   

11.
Hydrodynamic cavitation, a newly developed process intensification technique, has demonstrated immense po-tential for intensifying diverse physical and chemical processes. In this study, hydrodynamic cavitation was ex-plored as an efficient method for the formation of sub-100 nm oil-in-water (O/W) emulsions with high stability. O/W emulsion with an average droplet size of 27 nm was successful y prepared. The average droplet size of O/W emulsions decreased with the increase of the inlet pressure, number of cavitation passes and surfac-tant concentration. The formed emulsion exhibited admirable physical stability during 8 months. Moreover, the hydrodynamic cavitation method can be generalized to fabricate large varieties of O/W emulsions, which showed great potential for large-scale formation of O/W emulsions with lower energy consumption.  相似文献   

12.
The effects of droplet size and emulsifiers on oxidative stability of polyunsaturated TAG in oil-in-water (o/w) emulsions with droplet sizes of 0.806±0.0690, 3.28±0.0660, or 10.7±0.106 μm (mean ± SD) were investigated. Hydroperoxide contents in the emulsion with a mean droplet size of 0.831 μm were significantly lower than those in the emulsion with a mean droplet size of 12.8 μm for up to 120 h of oxidation time. Residual oxygen contents in the headspace air of the vials containing an o/w emulsion with a mean droplet size of 0.831 μm were lower compared with those of the emulsion with a mean droplet size of 12.8 μm. Hexanal developed from soybean oil TAG o/w emulsions with smaller droplet size showed significantly lower residual oxygen contents than those of the larger droplet size emulsions. Consequently, oxidative stability of TAG in o/w emulsions could be controlled by the size of oil droplet even though the origins of TAG were different. Spin-spin relaxation time of protons of acyl residues on TAG in o/w emulsions measured by 1H NMR suggested that motional frequency of some acyl residues was shorter in o/w emulsions with a smaller droplet size. The effect of the wedge associated with hydrophobic acyl residues of emulsifiers was proposed as a possible mechanism to explain differences in oxidative stability between o/w emulsions with different droplet sizes.  相似文献   

13.
The hydrodynamic cavitation multiphase reactor (HCMR) is emerging as a promising alternative for the intensification of liquid–liquid heterogeneous reactions, but research on HCMR modeling is lacking. In this article, an HCMR model was developed using Prileschajew epoxidation as the model system. First, based on experimental measurements of oil/water two-phase flow downstream of hydrodynamic cavitation devices, semiempirical correlations were proposed to describe the droplet size and droplet size distribution (DSD) as functions of flow conditions and geometry parameters. Then, with boundary conditions calculated by the DSD correlation, a droplet dynamics simulation in a reaction tank was performed by computational fluid dynamics coupled with population balance model to obtain the two-phase interfacial area. Finally, the acquired reactor model was substituted into an overall kinetic model, to simulate the epoxidation reaction in HCMR. Model predictions were verified by experimental results measured on an industrial scale HCMR.  相似文献   

14.
微通道内纳米颗粒对液滴聚并的影响规律   总被引:4,自引:2,他引:2       下载免费PDF全文
Pickering 乳液是纳米颗粒稳定的液液两相体系,微流控技术是制备单分散Pickering 乳液的有效方法,而含有纳米颗粒体系在微通道内的液滴聚并规律是该实施方法的关键科学问题之一。以正辛醇为连续相,水为分散相,研究了六边形扩大微通道内液滴碰撞过程,发现了液滴聚并、碰撞不聚并和不相互接触3 种流动状态,研究了流量、颗粒浓度和颗粒亲疏水性对于液滴聚并率的影响规律,分析了颗粒在液膜排空过程中的作用机理。  相似文献   

15.
A circular loop reactor was devised and used to study the suspension polymerization of styrene. The transient droplet diameter distributions and the final particle size distributions were measured by changing the impeller diameter and the impeller speed. The effects of the impeller diameter on the size distributions and mean sizes of the final polymer particles were investigated. In the case of lower mixing power, the mean polymer droplet diameters depend upon impeller diameter in the early stage of polymerization, but become almost identical irrespective of the impeller diameter after the middle stage. In the case of higher mixing power, the mean polymer droplet diameters are almost identical irrespective of the impeller diameter throughout polymerization. The final mean particle sizes are correlated only with mixing power.  相似文献   

16.
在直径为0.478 m的立式搅拌槽中,采用高岭土和水为物料,比较了四斜叶、六直叶涡轮等8种桨的固-液分散性能及搅拌功率(P)、桨组合形式对分散性能的影响规律. 结果表明,8种桨中分散效果最好的是六直叶涡轮桨和四斜叶桨,分散速率最快的是两叶CBY桨;分散速率与P1.08成正比;分散前期,搅拌功率增加,相对分散效果Y随之提高,当Y达到0.999以上,提高搅拌功率对搅拌效果几乎不起作用;采用分散速率较快(两叶CBY桨)与分散效果较好(四斜叶桨)的双桨组合,更适于连续操作过程.  相似文献   

17.
The determination of water and oil droplet size distributions in food emulsions by low‐field NMR has the advantage of a simple and non‐perturbing sample preparation. Furthermore, NMR performs very well with respect to precision. The current implementation on most benchtop NMR spectrometers deploys a variation of gradient duration and requires continuous corrections for gradient imbalances, thus making the whole procedure a time‐consuming one. By using variation of gradient strength and further stretching the capability of commercial benchtop NMR spectrometers, both water and oil droplet sizes can be measured in a more rapid manner, typically two to three times faster. The measured droplet size distributions are equivalent to those assessed by the current (slow) method, for both O/W and W/O emulsions. Furthermore, the rapid method shows a good performance with respect to precision. In addition, the method is able to determine droplet sizes in samples with much smaller amounts of dispersed phase.  相似文献   

18.
Abstract

The purpose of this work was to investigate and compare the influence of fluid flow in a single and dual impeller batch cooling crystallizer on crystal growth kinetics of borax decahydrate. Examinations were conducted in a crystallizer of 15?dm3 stirred by a single pitched blade turbine and straight blade turbine as well as their dual configurations. Kinetics parameters of crystal growth determined at applied mixing conditions were correlated with hydrodynamic conditions. In this paper, hydrodynamics was characterized by mixing time, which was experimentally determined, and by fluid flow patterns, which were simulated by the means of computational fluid dynamic (CFD). It was found that although the crystal growth in all systems investigated was controlled by the integration mechanism, the crystal growth rate constant changed significantly with impeller configuration. Regarding the characteristics of the final product, a dependence of the crystal size distribution on the fluid flow pattern was noticed while the number of impellers did not affect the product properties. On the other hand, mixing efficiency differed significantly with the type and number of impellers.  相似文献   

19.
A continuous process for methacrolein production was constructed by filling w/o Pickering emulsions in a column reactor. Ionic liquid (IL-[HDEA]Ac) with secondary amine was designed to catalyze propionaldehyde condensation with formaldehyde through the Mannich reaction. Emulsion droplets encapsulated with IL aqueous solution were stabilized with modified SiO2 nanoparticles and dispersed in cyclohexane, which could be observed as numerous reactors. The properties of SiO2 stabilizer, such as wettability, surface groups, and the effect on interfacial tension were investigated. The characteristics of emulsion influenced by stabilizer properties and content were systematically studied. The droplet size, IL concentration and liquid hourly space velocity were optimized. The droplets were evaluated at 0.5 hr−1 for 150 hr without IL leakage and obvious activity decreasing, indicating the excellent stability of the emulsion system. The continuous process showed a 1.25-fold enhancement in catalysis efficiency and less equipment compared to batch process.  相似文献   

20.
BACKGROUND: Poly[(vinyl alcohol)‐co‐(vinyl acetate)] (PVA) copolymers obtained by partial hydrolysis of poly(vinyl acetate) are currently used as industrial stabilizers in the suspension polymerization of vinyl chloride monomer (VCM). Their molecular characteristics, mainly the average degree of hydrolysis (DH ) and average degree of polymerization (DPw ), have a major influence on the monomer droplet size and the properties of the final poly(vinyl chloride) resin. RESULTS: The average droplet size and size distribution of chlorobutane/water emulsions, as a model system for VCM/water emulsions, were studied using acoustic attenuation spectroscopy on‐line with an agitated laboratory reactor. The emulsions were stabilized by PVA with DH values between 73 and 88 mol% and DPw values between 450 and 2500. The effects of agitation speed, stirring time and concentration of the PVA copolymers were investigated. An attempt was made to correlate the interfacial tension and the droplet size. CONCLUSION: On‐line acoustic spectroscopy appears to be a suitable technique for the real‐time control of the droplet size of monomer suspensions. The advantages and limitations of the technique are outlined. The validity and the application limits of the commonly cited correlation between the droplet size and the Weber number are established for polymeric surfactant‐stabilized emulsions. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号