首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sunflower oil was used for deep frying of potatoes at 170 ± 5 °C and for 8 h per day for 5 days in a fryer with an automatic oil filtration system. Three different frying operations were performed: operation (OP)-1, OP-2 and OP-3; that correspond to the oil unfiltered at the end of each frying day, the oil filtered through the fryer's own filter (passive filtration) and the oil firstly subjected to passive filtration and then filtered through a polyethersulfone membrane modified with hexamethyldisiloxane via radio frequency plasma (75 W-5 min, discharge power–time), respectively. The performance of each operation was investigated in terms of free fatty acids (FFA), conjugated dienoic acids (CD), TOTOX value, total polar content (TPC), Hunter color, viscosity, fatty acid composition, and tocopherol content. The results showed that OP-3 could decrease FFA, CD, TOTOX, TPC, L*a*b* value, viscosity and linoleic acid (18:2)/palmitic acid (16:0) ratio in 29.6, 11.7, 25, 30.8, 6.1*11.3*20.8*, 7.8, 12.2 %, respectively, compared to the unfiltered oil (OP-1). Regenerated oil from OP-3 had a frying life approximately 17 h more than oils from both OP-1 and OP-2.  相似文献   

2.
Frying quality and oxidative stability of two unconventional oils   总被引:1,自引:0,他引:1  
The behavior of crude Sclerocarya birrea kernel oil (SCO) and Sorghum bug (Agonoscelis pubescens) oil (SBO) during deep-frying of par-fried potatoes was studied with regard to chemical, physical, and sensory parameters, such as content of FFA, tocopherols, polar compounds, oligomer TG, volatile compounds, oxidative stability, and total oxidation (TOTOX) value. Palm olein was used for comparison. Whereas potatoes fried in SCO that had been used for 24 h of deep-frying at 175°C were still suitable for human consumption, potatoes prepared in SBO that had been used for 6 to 12 h were not, considering the sensory evaluation. In looking at the chemical and physical parameters, SBO exceeded the limits, after no later than 18 h of use, for the amount of polar compounds, oligomer TG, and FFA recommended by the German Society of Fat Sciences (DGF) as criteria for the rejection of used frying oils. In contrast to SBO, SCO oil did not exceed the limits for the content of polar compounds and oligomer TG during the frying experiment. Only the amount of FFA was exceeded; this was because the amount of FFA at the beginning of the experiment was higher than for refined oils. The results showed that both oils were suitable for deep-frying of potatoes, but remarkable differences in the time during which both oils produced palatable products were found.  相似文献   

3.
The main objective of this study was to determine the effect of different frying oils and frying methods on the formation of trans fatty acids and the oxidative stability of oils. Sunflower, canola and commercial frying oils, the most commonly used oils for frying potatoes in the fast food industry, were used as the frying medium. The value for total polar compounds was highest when commercial frying oil was used in the microwave oven (22.5 ± 1.1). The peroxide value, as an indicator of oil oxidation, was lowest for microwave oven frying (2.53 ± 0.03). The K232 and K270 values were 0.41 ± 0.04 and 0.18 ± 0.02, respectively, for commercial frying oil in the microwave oven. The lowest free fatty acid content was recorded for the commercial frying oil used in the deep‐fat fryer at 190 °C. The highest iodine value was measured for sunflower oil used in the deep‐fat fryer (148.14 ± 0.07), indicating a greater degree of unsaturation. The lowest trans fatty acid value was recorded for sunflower oil in the microwave oven (0.17 ± 0.05), with a higher overall amount of total trans fatty acids observed for oils after frying in the electrical deep‐fat fryer compared to the microwave. Sunflower oil was favourable for both frying methods in terms of the trans fatty acid content.  相似文献   

4.
Frying performance of low-linolenic acid soybean oil   总被引:3,自引:3,他引:0  
The frying performance of low-linolenic acid soybean oil from genetically modified soybeans was examined. Partially hydrogenated and unhydrogenated low-linolenic acid soybean oils were compared to two partially hydrogenated soybean frying oils. Frying experiments utilizing shoestring potatoes and fish nuggets were conducted. Frying oil performance was evaluated by measuring free fatty acid content, p-anisidine value, polar compound content, soap value, maximal foam height, polymeric material content, and Lovibond red color. The hydrogenated low-linolenic soybean oil (Hyd-LoLn) consistently had greater (P<0.05) free fatty acid content and lower p-anisidine values and polymeric material content than did the other oils. Hyd-LoLn generally was not significantly different from the traditional oils for polar content, maximal foam height, and Lovibond red color. The low-linolenic acid soybean oil (LoLn) tended to have lower soap values and Lovibond red color scores than did the other oils. LoLn had consistently higher (P<0.05) p-anisidine values and polymeric material content than did the other oils, and LoLn generally was not different (P<0.05) from the traditional oils for polar content, maximal foam height, and free fatty acid.  相似文献   

5.
Chemical properties and cytotoxicity of thermally oxidized oil   总被引:1,自引:0,他引:1  
Heated frying oils with different chemical properties in terms of AV (acid value), POV (peroxide value), COV (carbonyl value), and contents of polar compounds (PC) and triacylglycerol (TG), as well as color and odor, were obtained. Male Wistar rats were fed ad libitum for 12 weeks a powdered diet (AIN93G; no fat) containing 7 wt% of fresh oil (control) or one of the frying oils described above. The rats were subjected to anthropometric measurements, hematological analyses, and observations of the liver and kidneys. All of the rats grew well, and no gross symptoms attributable to the experimental oils were observed. However, the rats fed a diet containing the heated oil developed apparent liver damage to different degrees regardless of the chemical properties of the ingested oils. Thus, it was suggested that the chemical properties evaluated here had little to do with the cytotoxicity of heated oil, although the properties express quality of oil. Volatile compounds seem to be major candidates for the toxic agents in heated oil because oils with rancid and deteriorated odor show strong toxicity.  相似文献   

6.
We aimed at investigating oxidative stability and changes in fatty acid and tocopherol composition of extra virgin olive oil (EVOO) in comparison with refined seed oils during short‐term deep‐frying of French fries, and changes in the composition of the French fries deep‐fried in EVOO. EVOO samples from Spain, Brazil, and Portugal, and refined seed oils of soybean and sunflower were studied. Oil samples were used for deep‐frying of French fries at 180 °C, for up to 75 min of successive frying. Tocopherol and fatty acid composition were determined in fresh and spent vegetable oils. Tocopherol, fatty acid, and volatile composition (by SPME–GC–MS) were also determined in French fries deep‐fried in EVOO. Oil oxidation was monitored by peroxide, acid, and p‐anisidine values, and by Rancimat after deep‐frying. Differential scanning calorimetry (DSC) analysis was used as a proxy of the quality of the spent oils. EVOOs presented the lowest degree of oleic and linoleic acids losses, low formation of free fatty acids and carbonyl compounds, and were highly stable after deep‐frying. In addition, oleic acid, tocopherols, and flavor compounds were transferred from EVOO into the French fries. In conclusion, EVOOs were more stable than refined seed oils during short‐term deep‐frying of French fries and also contributed to enhance the nutritional value, and possibly improve the flavor, of the fries prepared in EVOO.  相似文献   

7.
Degradation and Nutritional Quality Changes of Oil During Frying   总被引:6,自引:0,他引:6  
The changes in regular canola oil as affected by frying temperature were studied. French fries were fried intermittently in canola oil that was heated for 7 h daily over seven consecutive days. Thermo-oxidative alterations of the oil heated at 185 ± 5 or 215 ± 5 °C were measured by total polar components (TPC), anisidine value (AV), color components formation, and changes in fatty acid composition and tocopherols. Results showed that TPC, AV, color and trans fatty acid content increased significantly (P < 0.05) as a function of frying temperature and time. The oil polyunsaturated fatty acids (PUFA) decreased in direct proportion to frying temperature and time. After 7 days of frying, the amount of PUFA was reduced by half and the trans isomers contribution increased 2.5 times during frying at 215 °C. Of the parameters assessed, total polar component and color had the highest correlation, with correlation coefficients of 0.9650 and 0.9302 for frying at 215 and 185 °C, respectively. TPC formation correlated inversely with the reduction of tocopherols.  相似文献   

8.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

9.
2-tert-Butyl-1,4-benzoquinone (TBBQ), the main oxidation product of tert-butyl-hydroquinone (TBHQ) during frying, is cytotoxic and its residual levels in frying oils and foods are unknown. In this study, TBBQ residues have been evaluated during the preparation of french fries. Results showed that frying at 140 °C resulted in the highest TBBQ peak concentration (48.42 mg kg−1) compared with frying at 190 or 170 °C. This unexpected finding can be attributed to more extensive hydrolytic reaction when frying at the lower temperature, generating more peroxyl radicals. TBBQ concentrations proved to be independent of the oil type among various unsaturated oils. However, higher TBBQ levels were observed in saturated palm oil and crude soybean oil than in unsaturated oil or refined oil. Continuous frying leads to the accumulation of a large amount of TBBQ in fried food. After frying 1–5 batches, TBBQ levels in both the frying oil and fries were above 10 mg kg−1, exceeding its critical cytotoxic concentration (IC50 value of 10.71 mg kg−1 for RAW 246.7 cells in our previous study), warranting concern with respect to the safety of fried food. FTIR has been utilized as an effective tool for visually monitoring the degree of oxidation in the frying medium with respect to its hydrogen peroxide level, which contributes to the increased level of TBBQ derived from TBHQ therein.  相似文献   

10.
Gymnodinoid dinoflagellate symbionts, commonly referred to as zooxanthellae, are widely distributed among marine invertebrates. It has been assumed that they represent only one species,Gymnodinium microadriaticum. The fatty acid composition of total lipids and galactolipids of zooxanthellae isolated from 8 species of corals, 3 species of clams and a foraminiferan have been analyzed and found to vary according to the host. For example, the content of eicosapentaenoic acid in clam zooxanthellae monogalactosyldiacylglycerol was less than 2%, whereas in the same lipid from coral zooxanthellae, the content ranged from 9 to 22%. Corresponding values for the acid in digalactosyl-diacylglycerol were 1–8% from clam zooxanthellae and 23–40% from coral zooxanthellae. Coral zooxanthellae monogalactosyldiacylglycerol contain higher levels of octadecatetraenoic acid than are found in digalactosyldiacylglycerol, whereas the reverse is true in clam zooxanthellae. The fatty acid composition of the lipids of an axenic culture of zooxanthellae isolated from the clamTridacna maxima are similar to those of cells freshly isolated from the host. The results suggest either that the host is capable of affecting the fatty acid metabolism of the symbiont or that different strains of zooxanthellae occur in corals and clams.  相似文献   

11.
Canola oil (CAO) with (0.05–0.4%) and without added bene kernel oil (BKO) and tert-butylhydroquinone (TBHQ, 100 ppm) was used for deep-fat frying of potatoes at 180 °C for 48 h. Frying stability of the oil samples during the frying process was measured based on the variations of total polar compounds (TPC) content, conjugated diene value (CDV), acid value (AV), carbonyl value (CV) and total tocopherols (TT). In general, frying stability of the CAO significantly (P < 0.05) improved in the presence of the TBHQ and BKO. The best frying performance for the CAO was obtained by using of 100 ppm TBHQ and 0.1% BKO. The effectiveness of TBHQ and BKO at these levels was found to be nearly the same. Increasing the level of BKO from 0.1 to 0.4% caused a decrease in the oxidative stability of the CAO, indicating the pro-oxidant effect of the oils added at these levels.  相似文献   

12.
Frying quality and oxidative stability of high-oleic corn oils   总被引:1,自引:3,他引:1  
To determine the frying stability of corn oils that are genetically modified to contain 65% oleic acid, high-oleic corn oil was evaluated in room odor tests and by total polar compound analysis. Flavor characteristics of french-fried potatoes, prepared in the oil, were also evaluated by trained analytical sensory panelists. In comparison to normal corn oil, hydrogenated corn oil and high-oleic (80 and 90%) sunflower oils, high-oleic corn oil had significantly (P<0.05) lower total polar compound levels after 20 h of oil heating and frying at 190°C than the other oils. Fried-food flavor intensity was significantly higher in the normal corn oil during the early portion of the frying schedule than in any of the high-oleic or hydrogenated oils; however, after 17.5 h of frying, the potatoes fried in normal corn oil had the lowest intensity of fried-food flavor. Corn oil also had the highest intensities of off-odors, including acrid and burnt, in room odor tests. High-oleic corn oil also was evaluated as a salad oil for flavor characteristics and oxidative stability. Results showed that dry-milled high-oleic corn oil had good initial flavor quality and was significantly (P<0.05) more stable than dry-milled normal corn oil after oven storage tests at 60°C, as evaluated by flavor scores and peroxide values. Although the high-oleic corn oil had significantly (P<0.05) better flavor and oxidative stability than corn oil after aging at 60°C, even more pronounced effects were found in high-temperature frying tests, suggesting the advantages of high-oleic corn oil compared to normal or hydrogenated corn oils.  相似文献   

13.
Total lipids were extracted from razor clams Sinonovacula constricta and Solen gouldi, and the molecular species of glycerophospholipid (Gpl) including choline glycerophospholipid (ChoGpl), ethanolamine glycerophospholipid (EtnGpl), serine glycerophospholipid (SerGpl), inositol glycerophospholipid (InsGpl), lysoChoGpl, lysoEtnGpl, and lysoSerGpl were characterized using a direct-infusion tandem mass spectrometric method for the first time. Meanwhile, the lipid class composition and phospholipid (PL) class composition as well as the fatty acid (FA) composition of total lipids, triacylglycerol (TAG), and PL were also investigated. About 238 and 235 molecular species were characterized, respectively, in Sinonovacula constricta and Solen gouldi. The majority of the dominant Gpl molecular species contained n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Also, razor clam lipids contained a high-proportioned PL (52.19–65.41% of total lipids) and PUFA (47.94–54.81 mol%). Furthermore, PL contained a higher proportion of PUFA (63.05–67.13 mol%), especially DHA (20.04–22.47 mol%) and EPA (16.27–21.46 mol%) than TAG (the corresponding values being 33.73–34.45, 11.95–12.27, and 8.13–0.8.99 mol%, respectively). Meanwhile, phosphatidylcholine (44.38–46.21 mol%) and phosphatidylethanolamine (38.84–39.95 mol%) were dominant among PL. In consideration of the high proportion of PUFA-enriched Gpl, razor clam plays a great role in promoting human health.  相似文献   

14.
In this study, the effect of deep fat frying on oil degradation, total phenols (TP) and total antioxidant activity (TAA) of hazelnut, corn, soybean and olive oils were investigated. Oil degradation and oxidation were monitored by measuring the total polar compounds (TPC) and the peroxide value (PV). The amount of TPC in corn, soybean and olive oils increased significantly with the time increment (p < 0.05). The PV of the oils did not exceed the maximum acceptable limit of 10 mequiv O2/kg after 125 min frying except for hazelnut oil (10.64 mequiv O2/kg). Deep-fat frying did not cause any significant change in the TP of corn oil, soybean oil and olive oil (p < 0.05). A significant decrease in the antioxidant activity was observed after 50 min frying using hazelnut oil and corn oil (p < 0.05). However, the antioxidant activity of soybean oil and olive oil significantly decreased after 75 and 25 min frying, respectively.  相似文献   

15.
范柳萍  张憨 《干燥技术与设备》2007,5(3):125-127,149
主要探讨了真空油炸胡萝卜片后三种炸用油的稳定性,研究了三种炸用油的酸价、过氧化值、羰基价随油炸时间的变化规律,分析了它们之间的相关性。结果显示:与大豆色拉油相比,棕榈油和猪油有更高的油炸稳定性;三种油的酸价、过氧化值、羰基价与油炸时间存在着显著的相关性。  相似文献   

16.
The specific heat capacity (cp) of frying oils is of practical importance in engineering work associated with refining operations and the thermal resistance during application. The objective of this study was to use modulated differential scanning calorimetry (MDSC) to measure the specific heat capacity of frying oil. Samples were exposed to a cyclic heating profile that was generated by a linear heating rate while simultaneously superimposing a sinusoidally varying time–temperature wave. The cp variation of three commercial frying oils during frying was tested over a temperature range between 0 and 250 °C, and the correlation of cp with triacylglycerol (TAG) polymer contents, total polar compounds (TPC), and polar fractions was studied. Results indicated that the specific heat capacity of frying oils increased linearly as temperature increased. During frying, cp had a positive relation with TAG polymers and TPC at the beginning, but finally decreased when frying ended. This was possibly associated with the variation of polar fractions as frying continued. The large molecular compounds and small molecular compounds of polar fractions were considered to contribute oppositely to cp, which led to its final decrease.  相似文献   

17.
The effect of the frying temperature, frying duration and the addition of NaCl on the formation of 3‐monochloropropane‐1,2‐diol (3‐MCPD) esters and glycidyl esters (GE) in palm olein after deep frying was examined in this study. The eight frying systems were deep‐fat frying (at 160 and 180 °C) of chicken breast meat (CBM) (with 0, 1, 3 and 5% sodium chloride, NaCl) for 100 min/day for five consecutive days. All oil samples collected after each day were analyzed for 3‐MCPD ester, GE, and free fatty acid (FFA) contents, specific extinctions at 232 and 268 nm (K232 and K268), p‐anisidine value (pA), and fatty acid composition. There was a significant (p < 0.05) decrease in the 3‐MCPD esters and a significant (p < 0.05) decrease in the GE with the increasing of the frying duration. There were significant (p < 0.05) increases in the 3‐MCPD esters formed when the concentration of NaCl increased from 0 to 5%. The addition of NaCl to the CBM during deep frying had no significant effect on the GE generation. The FFA contents, K232 and K268 and pA showed that all the frying oils were within the safety limit.  相似文献   

18.
Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1–2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.  相似文献   

19.
Lipid profiles of the lipids from female gonads (LFG) and male gonads (LMG) of abalones (Haliotis discus hannai) were evaluated based on the analysis of phospholipid (PL) molecular species, PL class composition, fatty acid (FA) composition, and lipid class composition. These results suggested that lipids from abalone gonads were abundant in omega-3 polyunsaturated FA (n − 3 PUFA, 14.42%–18.27% of total FAs) and PLs including phosphatidylcholine (PC, 21.26–47.85 mg g−1) and phosphatidylethanolamine (PE, 9.29–24.10 mg g−1). Furthermore, more than 60 molecular species of PC and PE were determined. Particularly, the molecular species containing n − 3 PUFA including eicosapentaenoic acid (EPA) constituted majority of PC and PE in LFG and LMG. By contrast, LFG contained more PC and PE species containing EPA. Considering the lipid profiles, abalone gonads are a potential source of PL-form n − 3 PUFA.  相似文献   

20.
Measurements of degradation in frying oils are mainly based on physico-chemical properties. Total polar compounds (TPC) and free fatty acids (FFA) content in frying oils are used as a guide for discarding used oils. The purpose of this study was to evaluate the efficacy of a sensory method in detecting degradation in soybean oils used in potato chips deep frying. The sensory evaluation of oil samples was determined by a trained panel; after rigorous selection and training steps. Free fatty acid, TPC and Rancimat induction period (IP) were quantified in the same samples. The proposed sensory method was sensitive to small differences in rancidity. The selected and trained sensory panel discarded oil samples with 0.175% FFA as oleic acid, 18.92% TPC, and 0.20 h IP. According to the results achieved in this research sensorial trained panel response is sensitive and accurate in refusing deteriorated frying oils. Besides this, soybean oil can be used for deep frying procedures and safely discarded according to the panel response, although presenting up to 7% linolenic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号