首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Triallyl cyanurate (TAC) and triallyl isocyanurate (TAIC) are thermosetting monomers with interesting interrelations: Calorimetry and infrared spectrophotometry were used to investigate the influence of atmosphere and initiator on the thermal events. The large extents of reaction observed during polymerization of TAC and TAIC are attributed to the formation of intramolecular rings. The higher conversions obtained with TAC are attributed to the extra length and flexibility of its allyl groups. Isomerization of poly(TAC) to poly(TAIC) is described as a three-step process: depolymerization of poly(TAC) to form monomeric TAC, isomerization of TAC to TAIC by a Claisen rearrangement, and repolymerization of the TAIC to poly(TAIC).  相似文献   

3.
The copoly(amic acid)s were prepared from two various diamines 2,2′‐bis (4‐aminophenoxy phenyl) hexafluoropropane or 2,2′‐bis (4‐aminophenoxy phenyl) propane and amine‐terminated oligosiloxane, respectively, with aromatic tetracarboxylic dianhydride (3,3′,4,4′‐benzophenone tetracarboxylic dianhydride). The resulted copoly(amic acid) with various mole ratio of triallyl isocyanurate (TAIC)/4,4′‐bismaleimidophenylmethane (BMI) were subsequently thermally imidized to the corresponding copolyimides. These polymers were characterized using viscometer, differential scanning calorimetry, thermogravimetric analyses, dynamic mechanical analysis (DMA), dielectric analyzer, and scanning electron microscope. The dielectric constant (DK) and dissipation factor (Df) of copolyimides with TAIC/BMI were much lower than that of copolyimides without TAIC/BMI. Furthermore, the formation of copolyimides also would enhance their thermal stability and solubility. DMA of copolymers showed only a glass transition temperature (Tg), indicating a random structure and an amorphous state. The morphology of copolyimides revealed no phase separation. This indicates that the homogeneous state has been achieved in this coreaction system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
从丝素水溶液中再生的丝纤维的结构与性能   总被引:2,自引:0,他引:2  
通过使用表面皿直接拉伸、毛细管重力纺丝和人工拉伸3种不同的成丝方法,从高浓度再生丝素水溶液中制得了丝纤维。用偏光显微镜观察了丝纤维的取向,用拉曼光谱仪和Instron拉力仪表征了丝纤维的结构和力学性能。结果发现,经毛细管剪切流动后再拉伸有利于再生丝性能的提高,所得的丝有较好的取向和较多的β折叠结构,力学性能也相对较好。剪切在丝纤维的成形过程中起重要的作用。  相似文献   

5.
Silk fibers from Bombyx mori silkworms were grafted using a novel grafting monomer, vinyltrimethoxysilane (VTMSi), with various grafting initiators. The effects of these grafting initiators were evaluated. It was possible to successfully copolymerize VTMSi within the silk fiber matrix without disturbing the fine structure of the fiber matrix, which was shown by FTIR analysis and refractive index measurements. The physical properties of VTMSi grafted silk were analyzed and compared to fibers grafted with conventional monomers such as methyl methacrylate, methacrylamide, and 2‐hydroxyethyl methacrylate. No trend in the tensile strength and elongation at break was observed when grafting silk fibers with VTMSi. Crease recovery in the wet state improved significantly, suggesting that this new grafting technique is important for the production of washable silk fabrics. The thermal stability of VTMSi grafted silk fibers was improved as shown by the shift of the endothermic peak for the thermal decomposition toward higher temperatures. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1764–1770, 2001  相似文献   

6.
Silk fibers were treated with methacrylamide (MAA), and changes in the mechanical properties of the silk fibers were investigated. The breaking load of the silk fibers was almost unchanged, whereas rigidity was markedly increased by the methylmethacrylate (MAA) treatment. Elongation at break of the silk fibers decreased significantly when the fibers were treated with MAA up to polymer add-on (ca. 300%). The cross-sectional area of the MAA-treated silk fiber was given by the addition of the cross-sectional area of the original silk fiber and that of the MAA polymer. The Young's modulus of MAA-treated silk fibers increased linearly with increasing volume fractions of fiber in MAA-grafted silk fibers. The Young's modulus of the MAA polymer in the MAA-treated silk fibers was estimated by extrapolating the relation between Young's moduli and volume fractions of fiber to the zero volume fraction of fiber. The Young's modulus of the MAA polymer in the MAA-treated silk fibers was larger than the sonic modulus measured for an MAA polymer plate. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Domestic (Bombyx mori) and wild (tussah, Antheraea pernyi) silk fabrics were treated with diluted NaOH solutions by the pad/batch method. The equillbrium moisture regain of tussah silk fibers increased steadily with alkaline treatment, while that of B. mori did not change. B. mori tensile strenght and elongation at break were slightly impaired. The average molecular orientation and crystallinity of both kinds of silk remained unchanged. Differential scanning calorimetry (DSC) and thermomechanical analysis(TMA) showed that the thermal behavior of B. mori silk was almost unaffected, while that of tussah exhibited slight changes in the temperature range 250–300°C. By dynamic mechanical measurements (DMA) it was elucidated that both storage and loss moduli of B. mori silk fibers decreased following NaOH treatment. On the other hand, tussah silk exhibited a noticeable upward shift of the major loss peak. Alkali-treated tussah silk fibers, dyed with an acid dyestuff, attained a lower degree of dye-bath exhaustion. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
This paper deals with the physical properties of silk fibers grafted with 2-hydroxyethyl methacrylate (HEMA). Both tensile strength and elongation measured in the dry and wet states gradually decreased with increasing weight gain. The initial modulus of the grafted silk fibers in the dry state sharply increased in the weight gain range of 0–16%, then decreased to a lower value than the reference untreated sample. The refractive indices parallel and perpendicular to the fiber axis decreased, though the former showed a steeper slope. Accordingly, birefringence and isotropic refractive index also decreased, suggesting a lower degree of crystallinity and molecular orientation of grafted silk fibers. DSC, TMA, and TGA curves of the HEMA-grafted silk fibers indicated an increased higher thermal stability of silk fibers due to the HEMA grafting. The dynamic mechanical measurements showed that the thermally induced molecular movement of both amorphous and crystalline domains of silk fibers was enhanced by HEMA grafting. X-ray diffraction curves, however, implied that the crystalline structure of the silk fibroin remained unchanged regardless of HEMA polymerization. The introduction of HEMA polymer in silk fibers was evidenced by the infrared spectra, exhibiting the absorption bands characteristic of either the grafted HEMA polymer and the fibroin molecules with ordered β structure. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
In this study, a series of dimension‐stabilized fatty acid eutectics and triallyl isocyanurate (TAIC) composite phase change materials were prepared via in situ reaction by blending the fatty acids and TAIC, in which the fatty acids were introduced as a phase change material (PCM), and TAIC performed as a supporting material by self‐crosslinking. Fourier transform infrared spectroscopy, X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy (SEM), and thermogravimetric analysis were applied to investigate the chemical structure, crystalline properties, phase transition behavior, microstructure, and thermal stability of the composites. The results indicated that the composite possessed excellent thermal reliability and heat storage durability even after 300 heating–cooling cycles. Moreover, the composites had applicable phase transition temperatures in the range of 26–40 °C and satisfying latent heat storage capacities of higher than 110 J/g. The SEM images showed that the particle size of the nanoparticles of the composites was about 200 nm after treatment. The dimensional measurement of the composites proved a high service temperature of 100 °C, indicating that the composites were promising for thermal energy storage materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44866.  相似文献   

10.
The structural characteristics and physical properties of epoxide-treated tussah silk fibers from Antheraea pernyi silkworm are discussed in relation to the increasing weight gain values. Ethyleneglycol diglycidylether (E) and glycerin diglycidylether (G) were used as modifying agents. The noticeably high weight gain values (about 140%) obtained were attributed to the catalytic effect of SCN? anion absorbed by the fibers during the pretreatment under reduced pressure conditions. The amino acid analysis showed that epoxide G exhibited a slightly higher reactivity toward tyrosine, while arginine preferably reacted with epoxide E. The peak of loss modulus (E″) determined by dynamic viscoelastic measurements became broader and its position linearly shifted to lower temperature when the weight gain increased, and a minor peak appeared in the low-temperature region below 50°C. Differential scanning calorimetry (DSC) thermograms showed that the position of the decomposition peak of modified silk fibers shifted to lower temperature with increasing weight gain values. The minor and broad endothermic peaks, appearing in the reference sample at about 234 and 290°C, disappeared by epoxide treatment. X-ray diffraction patterns of tussah silk fibers suggested that the epoxide treatment does not affect directly the crystalline regions but causes a decrease of molecular orientation in the amorphous regions. Both briefringence (Δn) and isotropic refractive index (niso) of tussah silk fibers decreased by the reaction with epoxides, although with different rate and extent, confirming the decrease of average molecular orientation. The extent of decrease of strength and elongation depends on the kind of epoxide and on the weight gain value. Epoxide-treated tussah silk fibers did not show significant changes of surface characteristics as the weight gain values attained up to 60%.  相似文献   

11.
以聚丙烯腈(PAN)纤维为基体,聚乙烯亚胺(PEI)为交联剂,采用水解—交联—水解工艺制备得到PAN基交联水解羧酸纤维(PEIXPAN-COOH纤维),并对其结构与性能进行了表征。结果表明:通过三步法制得的PEIXPAN-COOH纤维经红外光谱证实为目标产物,且纤维表面平整度较基体PAN纤维降低;纤维的羧基含量为4. 5 mmol/g,断裂强度为4. 43 cN/dtex,断裂伸长率为31. 1%,纤维的初始模量为39. 33 cN/dtex,与基体PAN纤维相比,其断裂强度和断裂伸长率分别下降了2. 6%和5. 8%,初始模量提高了6. 6%; PEIX-PAN-COOH纤维吸水性较好,其增重倍数为31,而基体PAN纤维增重倍数仅为6。  相似文献   

12.
Tussah silk fibers were treated with methacrylamide (MAA). The polymerization of MAA onto tussah silk fibers and the mechanical properties of the MAA-treated tussah silk fibers were investigated. The tanning agent contained in tussah silk fibers acted as an inhibitor to the radical polymerization of MAA. The alkali treatment enhanced the swelling of noncrystalline regions of the tussah silk fibers and promoted the polymerization of MAA onto the tussah silk fibers. The cross-sectional area of the MAA-treated tussah silk fiber was given by the sum of the cross-sectional area of the original silk fiber and that of the MAA polymer. Breaking load of the fibers was almost unchanged by the MAA treatment, while rigidity was markedly increased. Young's modulus of the MAA-treated tussah silk fibers decreased with decreasing volume fractions of the fiber in the MAA-treated tussah silk fibers. Young's modulus of the MAA polymer in the MAA-treated tussah silk fibers was estimated by extrapolating the relation between Young's moduli and the volume fractions of the fiber to zero volume fraction. Young's modulus of the MAA polymer in the MAA-treated tussah silk fibers was significantly larger than the modulus of a MAA polymer plate. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2051–2057, 1997  相似文献   

13.
14.
Summary A cationic adduct of a partly blocked hexamethylene isocyanurate and N-methyldiethanolamine was prepared and applied as a crosslinker in one-pack water-borne polyurethane system. The deblocking and crosslinking reactions were followed by FTIR, TGA and DSC techniques. Deblocking started at about 100°C, while at higher temperatures urethane, allophanate, and urea linkages were formed. The efficiency of the cationic crosslinker was evaluated by determining the insoluble part of the crosslinked polyurethane ionomer films. Films of a good solvent resistance were obtained using 15 wt% of the cationic crosslinker and 0.05 wt% of a catalyst at 130°C.  相似文献   

15.
Silk is a structural protein fiber that is stable over a wide pH range making it attractive for use in medical and environmental applications. Variation in amino acid composition has the potential for selective binding for ions under varying conditions. Here we report on the metal ion separation potential of Mulberry and Eri silk fibers and powders over a range of pH. Highly sensitive radiotracer probes, 64Cu2+, 109Cd2+, and 57Co2+ were used to study the absorption of their respective stable metal ions Cu2+, Cd2+, and Co2+ into and from the silk sorbents. The total amount of each metal ion absorbed and time taken to reach equilibrium occurred in the following order: Cu2+ > Cd2+ > Co2+. In all cases the silk powders absorbed metal ions faster than their respective silk fibers. Intensive degumming of the fibers and powders significantly reduced the time to absorb respective metal ions and the time to reach equilibrium was reduced from hours to 5–15 min at pH 8. Once bound, 45–100% of the metal ions were released from the sorbents after exposure to pH 3 buffer for 30 min. The transition metal ion loading capacity for the silk sorbents was considerably higher than that found for commercial ion exchange resins (AG MP‐50 and AG 50W‐X2) under similar conditions. Interestingly, total Cu2+ bound was found to be higher than theoretically predicted values based on known specific Cu2+ binding sites (AHGGYSGY), suggesting that additional (new) sites for transition metal ion binding sites are present in silk fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
It is not possible to improve the toughness of triallyl isocyanurate (TAIC) resins by applying the procedures useful for diallyl phthalate (DAP) resins as typical allyl resins. The results obtained are discussed in connection with the network structure of TAIC resin. Thus, the polymerization of TAIC would provide a homogeneous network accompanied by the incomplete occurrence of intermolecular crosslinking reactions caused by the rigidity of polymer chains, although DAP resins would consist of the microheterogeneous networks as the agglomerate of colloidal particles.  相似文献   

17.
After reaction of zein with glyoxal the resulting electrospun fibers have improved resistance to known zein solvents. Durable fibers with diameters of 0.6 μm could be produced. The reaction between zein and glyoxal was carried out in acetic acid (AcOH) at temperatures between 25 and 60°C at various lengths of time. Gelation would occur after higher extents of reaction. During the course of reaction, solution viscosity increased which increased the diameter of the electrospun fibers produced from these solutions. Gel electrophoresis showed increased molecular weight as the reaction progressed. When 6% glyoxal was allowed to react with zein at 25°C for 6 h, the resulting fibers were durable to AcOH as spun. Other formulations required a second thermal treatment to provide solvent durable fabrics. Fibers displayed different secondary structure utilizing far‐UV circular dichroism spectroscopy. The infrared spectra displayed peaks in the C? O region supporting the reaction of glyoxal with hydroxyl groups present on zein. Zein fabrics incorporating glyoxal had modestly improved tensile strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The short‐chain epoxy resin (SCER) was prepared direct from epichlorohydrin/bisphenol A (ECH/BPA). The resulted SCER and 4,4′‐diaminodiphenyl sulfone (DDS) with various weight percent of triallyl isocyanurate/4,4′‐bismaleimidophenylmethane (TAIC/BMI) were subsequently thermally coreacted to the corresponding high performance materials for high frequency application. They were characterized using potentiometry, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), dielectric analyzer, and scanning electron microscope (SEM). Dynamic mechanical analysis (DMA) of polymers showed only a Tg indicating a low entropy, amorphous state and formed a conterminously linked polymer. The morphology of polymers revealed no phase separation. The formation of polymer was in good agreement with the proposed molecular structure, and has enhanced good thermal, mechanical, and electric properties. Furthermore, with lower nitrogen content was achieved UL‐94 V‐0 rating. No fume and toxic gas emission were observed during burning test for this system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2470–2480, 2006  相似文献   

19.
The radiation grafting of silk with methacrylamide (MAA) was studied using an electron‐beam (EB) irradiation technique. Two irradiation processes, preirradiation and coirradiation, were compared, and some factors affecting the degree of grafting were investigated. The radiation crosslinking of silk with dimethyloldihydroxyethylene urea (DMDHEU) was preliminarily studied. The physical and mechanical properties such as whiteness, breaking strength, and resilience of the radiation‐grafted/crosslinked silk fabrics were examined. The radiation grafting of silk with MAA increases the silk weight, while the radiation crosslinking of silk with DMDHEU imparts improved crease resistance to silk. X‐ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analysis indicate the formation of peroxy and free‐radical species on the EB‐irradiated silk. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2028–2034, 2004  相似文献   

20.
The structural characteristics, physical properties, and dyeing behavior of Bombyx mori silk fibers containing ethoxyethylmethacrylate (ETMA) polymer are reported in relation to the add-on. The add-on value increased with the reaction time and attained a maximum after 60 min at 80°C. The surface of silk fibers with an add-on value of 40% showed the presence of several irregular granules, consisting of ETMA oligomers. The infrared spectrum of the silk fibers containing the ETMA polymer showed overlapped absorption bands due to the molecular conformation of untreated silk and ETMA polymer, giving evidence that the ETMA polymerization occurred inside the fiber matrix. The DSC results suggested that the thermal decomposition behavior of the silk fiber remained almost unchanged, except that the decomposition temperature shifted slightly to higher temperature. The tensile properties of the silk fiber remained unchanged regardless of the ETMA polymerization. The rate and extent of acid dye uptake was greatly increased by the polymerization of ETMA into the silk fibers as well as the transfer printing properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号