首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intelligent closed-loop expert control system has been developed for automated control of the resin transfer molding process of a graphite fiber preform using an epoxy resin, E905L. The sensor model system has been developed to make intelligent decisions based on the achievement of landmarks in the cure process, such as full preform impregnation, the viscosity, and the degree of cure of the resin rather than time or temperature. In-situ frequency dependent electromagnetic sensor (FDEMS) and the Loos resin transfer model are used to monitor and control the processing properties of the epoxy resin during RTM impregnation and cure of an advanced fiber architecture stitched preform. Once correlated with viscosity (η) and degree of cure (α), the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for monitoring, evaluating, and controlling intelligently the progress of the RTM process in situ in the mold throughout the fabrication process and for verification of the quality of the composites.  相似文献   

2.
The cure kinetics of a high performance PR500 epoxy resin in the temperature range of 160–197°C for the resin transfer molding (RTM) process have been investigated. The thermal analysis of the curing kinetics of PR500 resin was carried out by differential scanning calorimetry (DSC), with the ultimate heat of reaction measured in the dynamic mode and the rate of cure reaction and the degree of cure being determined under isothermal conditions. A modified Kamal's kinetic model was adapted to describe the autocatalytic and diffusion‐controlled curing behavior of the resin. A reasonable agreement between the experimental data and the kinetic model has been obtained over the whole processing temperature range, including the mold filling and the final curing stages of the RTM process.  相似文献   

3.
Triaxial residual tensile stresses resulting after cooling a 3D woven composite from the curing temperature cause cracking in the resin pockets for weave architectures that have high through‐the‐thickness constraint. We show how curing cycle modifications can reduce the hydrostatic tensile stress generated by thermal mismatch during cooling of Hexcel RTM6 epoxy resin constrained in a quartz tube which simulates extreme constraint in a composite. The modified curing schedule consists of a high temperature cure to just before the glass transition, a lower temperature hold that takes the resin through the glass transition thereby freezing in the zero stress state, followed by high temperature cure to bring the resin to full conversion. We show that this process is sensitive to heating rates and can reduce the zero stress state of non‐toughened RTM6 resin to a temperature similar to a commercial rubber‐toughened resin, Cycom PR520. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43373.  相似文献   

4.
A new apparatus has been constructed to measure the thermal conductivity and the thermal diffusivity of reactive and nonreactive liquids and solids. The method used consists in suddenly subjecting the test specimen to a thermal flux and measuring the velocity of the heat wave across the sample. Maintaining the heat flux leads to a steady thermal gradient across the sample from which the thermal conductivity can be determined. The test duration is short relative to durations employed by existing conventional techniques and thus causes only a small thermal disturbance to the sample of the order of 1 to 2°C. Thermal properties of liquids and solids, including thermoplastics and a typical epoxy resin during cure with different equivalents of an aromatic diamine hardener have been measured near room temperature. Experimental data compare favorably with literature values for similar systems. Variations in thermal conductivity and diffusivity during cure have been obtained through a series of individual discrete measurements to cover the whole isothermal cure history. The results have been analyzed and discussed with respect to the cure characteristics of the resin and the nature of the physicochemical changes the material undergoes during cure.  相似文献   

5.
As a result of increased interest from industry in using dielectric cure monitoring, a need has arisen for simplifying frequency, cure, and temperature dependent data so that control decisions can be readily made. Techniques utilizing data covering several decades of frequency now exist for separating ionic conduction levels from dipole and electrode polarization responses. Ionic conduction levels are particularly useful since they can be correlated to both viscosity and extent of cure. In addition to being a function of extent of cure, dielectric properties are also influenced by temperature. This dependence often makes the dielectric response more difficult to interpret. This paper investigates two methods for overcoming the temperature dependence of the dielectric response during nonisothermal cure. The first method utilizes recent WLF modeling techniques and extends them with the end result of extracting Tg in real time during cure. The second technique involves measuring the temperature dependence of uncured and cured material. Utilizing the correlation between log ionic conductivity and extent of cure, which has been noted by previous researchers, the normalized conductivity can be converted to a cure index. Several examples including epoxy, polyurethane, and a UV cured photoresist are presented, showing data before normalization and after both Tg and cure index determination.  相似文献   

6.
The cure of a commercial epoxy resin system, RTM6, was investigated using a conventional differential scanning calorimeter and a microwave‐heated calorimeter. Two curing methods, dynamic and isothermal, were carried out and the degree of cure and the reaction rates were compared. Several kinetics models ranging from a simple nth order model to more complicated models comprising nth order and autocatalytic kinetics models were used to describe the curing processes. The results showed that the resin cured isothermally showed similar cure times and final degree of cure using both conventional and microwave heating methods, suggesting similar curing mechanisms using both heating methods. The dynamic curing data were, however, different using two heating methods, possibly suggesting different curing mechanisms. Near‐infrared spectroscopy showed that in the dynamic curing of RTM6 using microwave heating, the epoxy‐amine reaction proceeded more rapidly than did the epoxy‐hydroxyl reaction. This was not the case during conventional curing of this resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3658–3668, 2006  相似文献   

7.
The emission of weak visible chemiluminescence (CL) during the cure of a tetraglycidyl 4,4′-diaminodiphenyl methane (TGDDM)-based epoxy resin, with three different concentrations of 4,4′-diaminodiphenylsulfone (DDS) has been studied at 135°C. Spectral analysis indicates that the CL originates from trace oxidation of the TGDDM resin and the emission intensity is sensitive to the viscosity changes during cure. From thermal analysis data, sharp discontinuities in CL intensity are shown to occur at the gel point. The temperature dependence of CL from a cured resin also shows a sharp discontinuity at Tg. These results indicate that CL provides a sensitive monitor of both the kinetics of gelation and the network formation in this epoxy resin.  相似文献   

8.
Amine-functionalized MIL-101(Cr)-NH2 metal–organic frameworks (MOF-N)/epoxy nanocomposites with Excellent cure label and high thermal stability were developed. Structure–property relationship was discussed by comparison of the cure state, thermal and viscoelastic behavior of epoxy nanocomposites containing pristine MOF or MOF-N applying differential scanning calorimetry (DSC), thermogravimetric analysis, and dynamic mechanical analysis. Epoxy containing 0.3 wt% MOF-N exhibited high glass transition temperature (Tg) of 96°C compared with 85°C observed for epoxy/MOF system. Thus, MOF-N played the role of catalyst in epoxy/amine curing reaction. Correspondingly, a lower activation energy was obtained based on cure kinetics modeling based on DSC measurements. Besides, incorporation of low amount (0.5 wt%) MOF-N induced an early-state resistance against decomposition, featured by 11°C rise in decomposition temperature at 5% weight loss. This was ascribed to the formation of porous metallic oxides during thermal decomposition of MOF-N in the epoxy system acting as a heat barrier, which increased the activation energy of decomposition. Amine-functionalization considerably prevented from further oxidation of the inner part of the matrix.  相似文献   

9.
The analysis of the chemorheological behavior of an epoxy prepolymer based on a diglycidylether of bisphenol‐A (DGEBA) with a liquid aromatic diamine (DETDA 80) as a hardener was performed by combining the data obtained from Differential Scanning Calorimetry (DSC) with rheological measurements. The kinetics of the crosslinking reaction was analyzed at conventional injection temperatures varying from 100 to 150°C as experienced during a Resin Transfer Molding (RTM) process. A phenomenological kinetic model able to describe the cure behavior of the DGEBA/DETDA 80 system during processing is proposed. Rheological properties of this low reactive epoxy system were also measured to follow the cure evolution at the same temperatures as the mold‐filling process. An empirical model correlating the resin viscosity with temperature and the extent of reaction was obtained to carry out later a simulation of the RTM process and to prepare advanced composites. Predictions of the viscosity changes were found to be in good agreement with the experimental data at low extents of cure, i.e., in the period of time required for the mold‐filling stage in RTM process. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4228–4237, 2006  相似文献   

10.
The effect of the elastomer structure on toughening highly crosslinked epoxy systems in a resin transfer moulding process (RTM) was investigated. Two kinds of elastomers containing carboxyl functionalized groups were used: (1) a reactive liquid elastomer based on carboxyl‐terminated butadiene‐acrylonitrile copolymer (CTBN), (2) a preformed core‐shell rubber (CSR). The introduction of CTBN rubber caused the modification in the glass transition temperature due to the miscibility in the epoxy matrix, whereas CSR particles did not. During cure, these elastomers affected the morphological, rheological and dielectric behaviour of epoxy/amine systems. A blend of 5% CTBN and 5% CSR exhibited a bimodal distribution of rubber particle sizes (analyzed by transmission electron microscopy) whereas scanning electron microscopy showed the glass fibre‐matrix cohesion in fracture surfaces. A semi‐empirical model was used (developed by Castro‐Macosko for describing chemorheological behaviour of epoxy/amine systems for the RTM process). The increase in viscosity and the reduction in ion conductivity were the two key parameters to monitor the cure process. The presence of rubber affected the rheological behaviour involving initial viscosity and gel point. The investigation of temperatures, pressures and ionic conductivities in various glass fibre layers was conducted to control the front flow filling and the cure reaction. The introduction of rubber modified the inflexion area of the cured rubber–epoxy blends by changing the cure rate. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
The time–temperature–transformation (TTT) isothermal cure diagram and the continuous-heating-transformation (CHT) cure diagram are calculated from a reaction model for a high-Tg epoxy/amine system that has been developed to describe both epoxy/amine and etherification reactions in kinetically and diffusion-controlled reaction regimes. The cure diagrams are applied to various processing operations. The optimization of processing and of material properties by exploiting gelation and/or vitrification during cure is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Microdielectric analysis (DEA) was carried out to investigate the cure behavior of a bisphenol F epoxy/aromatic amine resin system using an online dielectric cure monitoring technique. Ionic conductivity measured by a microdielectric sensor under isothermal conditions was correlated to the degree of cure and glass‐transition temperature, which are determined by differential scanning calorimetry (DSC). Results obtained by isothermal DSC measurement were used to establish a cure kinetic model for the epoxy resin. Experimental results show that the ratio of the ion conductivity to the initial ion conductivity, Logσ/Logσ0, has a linear relation with the glass‐transition temperature. Furthermore, correlations between ion conductivity and degree of cure and cure rate are established using the best fit of the measured data. Cure behavior of the epoxy resin obtained by DEA is compared with that predicted by the cure kinetics model. Good agreement was observed. POLYM. ENG. SCI., 47:150–158, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
Thermal conductivity and diffusivity of carboxyl‐terminated copolymer of polybutadiene and acrylonitrile (CTBN) and hydroxyl‐terminated polybutadiene (HTPB) liquid rubber‐ modified epoxy blends were investigated. A good agreement was observed between the calculated values of the specific heat estimated from thermal conductivity, diffusivity, and density measurements and the DSC results. Measurements of the thermal conductivity values of HTPB/Epoxy blends were in good agreement with three simple theoretical models, which have been used thereafter for the estimation of the unknown value of the thermal conductivity of CTBN (kCTBN = 0.24 Wm?1K?1). The morphology of the rubber‐modified epoxy blends has been quantified and indicate a tendency towards co‐continuous phase upon the inclusion of higher weight percentage of rubber (≥30 wt %). Moreover, we notice a significant enhancement of the thermal conductivity during this morphological shift. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The compatibility of styrene‐block‐butadiene‐block‐styrene (SBS) triblockcopolymer in epoxy resin is increased by the epoxidation of butadiene segment, using hydrogen peroxide in the presence of an in situ prepared catalyst in water/dichloroethane biphasic system. Highly epoxidized SBS (epoxy content SBS >26 mol%) give rise to nanostructured blends with epoxy resin. The cure kinetics of micro and nanostructured blends of epoxy resin [diglycidyl ether of bisphenol A; (DGEBA)]/amine curing agent [4,4′‐diaminodiphenylmethane (DDM)] with epoxidized styrene‐block‐butadiene‐block‐styrene (eSBS 47 mol%) triblock copolymer has been studied for the first time using differential scanning calorimetry under isothermal conditions to determine the reaction kinetic parameters such as kinetic constants and activation energy. The cure reaction rate is decreased with increasing the concentration of eSBS in the blends and also with the lowering of cure temperature. The compatibility of eSBS in epoxy resin is investigated in detailed by Fourier transform infrared spectroscopy, optical and transmition electron microscopic analysis. The experimental data of the cure behavior for the systems, epoxy/DDM and epoxy/eSBS(47 mol%)/DDM show an autocatalytic behavior regardless of the presence of eSBS in agreement with Kamal's model. The thermal stability of cured resins is also evaluated using thermogravimetry in nitrogen atmosphere. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
The cure behavior and thermal degradation of high Tg epoxy systems have been investigated by comparing their isothermal time-temperature-transformation (TTT) diagrams. The formulations were prepared from di- and trifunctional epoxy resins, and their mixtures, with stoichiometric amounts of a tetrafunctional aromatic diamine. The maximum glass transition temperatures (Tg) were 229°C and > 324°C for the fully cured di- and trifunctional epoxy materials, respectively. Increasing functionality of the reactants decreases the times to gelation and to vitrification, and increases the difference between Tg after prolonged isothermal cure and the temperature of cure. At high temperatures, there is competition between cure and thermal degradation. The latter was characterized by two main processes which involved devitrification (decrease of modulus and Tg) and revitrification (char formation). The experimentally inaccessible Tg (352°C) for the trifunctional epoxy material was obtained by extrapolation from the values of Tg of the less highly crosslinked systems using a relationship between the glass transition temperature, crosslink density, and chemical structure.  相似文献   

16.
The glass transition temperature (Tg) advancement and the chemoviscosity development under isothermal conditions have been investigated for four epoxy/amine systems, including commercial RTM6 and F934 resins. Differential scanning calorimetry (DSC) was the thermoanalytical technique used to determine the Tg advancement and rheometry the technique for the determination of the chemoviscosity profiles of these resin systems. The complex cure kinetics were correlated to the Tg advancement via an one‐to‐one relationship using Di Benedetto's formula. It was revealed that the three‐dimensional network formation follows a single activated mechanism independent of whether the cure kinetics follow a single or several activation mechanisms. The viscosity profiles showed the typical characteristics of epoxy/amine cure. A modified version of the Williams‐Landel‐Ferry equation (WLF) was adequate to model the viscosity profiles of all the resin systems, in the temperature range 130 to 170°C, with a very good degree of accuracy. The parameters of the WLF equation were found to vary in a systematic manner with cure temperature. Further correlation between Tg and viscosity showed that gelation, defined as the point where viscosity reaches 104 Pas, occurs at a unique Tg value for each resin system, which is independent of the cure conditions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2178–2188, 2000  相似文献   

17.
The curing kinetics and the resulting viscosity change of a two‐part epoxy/amine resin during the mold‐filling process of resin‐transfer molding (RTM) of composites was investigated. The curing kinetics of the epoxy/amine resin was analyzed in both the dynamic and the isothermal modes with differential scanning calorimetry (DSC). The dynamic viscosity of the resin at the same temperature as in the mold‐filling process was measured. The curing kinetics of the resin was described by a modified Kamal kinetic model, accounting for the autocatalytic and the diffusion‐control effect. An empirical model correlated the resin viscosity with temperature and the degree of cure was obtained. Predictions of the rate of reaction and the resulting viscosity change by the modified Kamal model and by the empirical model agreed well with the experimental data, respectively, over the temperature range 50–80°C and up to the degree of cure α = 0.4, which are suitable for the mold‐filling stage in the RTM process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2139–2148, 2000  相似文献   

18.
The development of conductive polymer composites remains an important endeavor in light of growing energy concerns. A conducting polymer composite in the presence of plasticized carbon black (CB) and epoxy resin has been developed. Room temperature electrical conductivity, mobility carriers (μ), and number of charges (N) increase by increasing CB content. Electrical conductivity–temperature dependence of the composite was investigated and negative temperature coefficient of conductivity (NTC) behavior of the composites was revealed. The mechanism of the NTC effect in materials is related to the thermal expansion of the epoxy matrix and barriers height energy. The current–voltage behavior of epoxy/CB composites shows a switching effect and the mechanism of negative resistance is interpreted in details. Thermal conductivity (γ) increases with increasing filler content and the experimental data was compared with a theoretical model based on energy balance equation. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

19.
An analytical procedure has been developed for modelling the kinetics of the cure process of a commercial epoxy resin for resin transfer moulding (RTM) applications, using differential scanning calorimetry (DSC) in the isothermal and dynamic modes to obtain the experimental database. The overall reaction rate of the epoxide groups with amines was determined and fitted by an autocatalytic kinetic model. An improvement of the model to allow for diffusion limitation effects results in a good agreement between experimentally determined and predicted reaction rates. A non-linear least squares regression analysis method based on Marquardt's algorithm was used to fit the DSC reaction rate data with an appropriate model and to evaluate the activation energies and the reaction orders for this particular resin system. The Di Benedetto equation was utilised to establish the relationship between conversion and glass transition temperature (Tg), required to develop the diffusion-dominated part of the model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号