首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

2.
A new melt blending method under synergy of extensional deformation and in-situ bubble stretching for high-density polyethylene (HDPE) thermally conductive composites filled by nano silicon carbide (nano-SiC) was reported. Effects of loadings and mixing time of azodicarbonamide (AC) foaming agent on the properties of the composites were experimentally studied. Scanning electron microscopy imaging showed that the nano-SiC particles dispersed uniformly in the HDPE matrix with the addition of AC. The complex viscosity and storage modulus increased with increasing AC content and decreased with increasing mixing time. The mechanical properties of the composites improved with the addition of AC and proper mixing times. The thermal conductivity of the composites increased from 0.2 to 0.7 W m−1 K−1 without any damage to the mechanical properties when the mixing time increased from 2 to 6 min. These results showed that the new mixing technique enables us to prepare particle-filled thermally conductive polymer composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47648.  相似文献   

3.
Phenolic resin/carbon fiber (PF/CF) composites have good tribological properties; however, their extensive applications are limited because of the poor thermal conductivity of the phenolic resins. In this work, core‑shell particles of polyaniline-coated (3-aminopropyl) triethoxysilane-modified β-Si3N4 (m-SiN@PANI) were used to enhance the tribological, electrical, and thermal conductivity properties of a PF/CF composite. A core‑shell particle, consisting of m-SiN@PANI, was characterized by Fourier Transform Infrared Spectrometry, X-Ray Diffraction, Scanning Electron Microscope, and Transmission Electron Microscope. The friction, thermal, and electrical properties of the composites were characterized by multifunctional vertical friction testing, wear measurement testing, thermogravimetric analysis, thermal constant analysis, and electrical conductivity testing. Remarkably, the test results showed that compared with the wear surface of the PF/CF composite, that of the phenolic resin/(2.0 wt % m-SiN@PANI)/carbon fiber composite exhibited a smoother morphology. The results indicated that the addition of m-SiN@PANI effectively improved the thermal conductivity, electrical conductivity, friction coefficient, and wear rate of the composites, which were 3.164 Wm−1 K−1, 5.33 × 10−6 S/m, 0.1681 and 1.13 × 10−8 mm3/Nm, respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47785.  相似文献   

4.
The carbon fiber/(carbon nanotubes/polyetherimide)/poly ether ether ketone (CF/(CNTs/PEI)/PEEK) laminates are prepared by inserting carbon nanotubes/polyetherimide (CNTs/PEI) interleaves into interlaminar region. The mechanical properties and electrical conductivities of the developed laminates are evaluated. The results indicate that the interlaminar shear strength and flexural strength of CF/(CNTs/PEI)/PEEK laminates are increased by 42.9% and 24.7%, after inserting CNTs2.91/PEI interleaves, respectively. The cross-sectional images of laminates after mechanical tests verify strong fiber-resin adhesion by scanning electron microscope observation. The pertinent mechanism responsible for the improvement of mechanical properties is mechanical interlocking effect of CNTs. After incorporating CNTs/PEI interleaves, the electrical conductivity of laminates is markedly improved due to the formation of conductive pathway. This work suggests that this method is compatible with the preparation process of thermoplastic composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48658.  相似文献   

5.
In this study, composite thin films were fabricated by mixing one‐dimensional silver nanowires (AgNWs) with graphene, polybenzoxazine (PBZ) and epoxy. Their electrical and thermal properties under different environmental conditions were investigated. The AgNWs were prepared by a polyol reduction method using ethylene glycol as a reducing agent and polyvinylpyrrolidone as a soft template to reduce silver ions. High aspect ratio AgNWs were then mixed into polymer matrices to allow them to form electrical and thermal conductive paths. Next, a trace amount of graphene was added into the nanocomposites in order to enhance their electrical and thermal properties. The results showed that the addition of graphene and AgNWs improved the threshold leakage current, and a 33% increase in thermal diffusivity was observed. The water resistance and gas barrier properties of PBZ and graphene effectively improved the thermal oxidation stability, and a 200% increase in electrical conductivity was achieved after 120 h of thermal oxidation treatment. A considerable difference was observed between the moduli of epoxy and PBZ. Hardness and phase analyses using atomic force microscopy showed that material modulus mismatch occurred across the interface between the materials, triggering phonon scattering. However, the increase in thermal conductivity was not significant for either material. © 2018 Society of Chemical Industry  相似文献   

6.
Flexible strain sensors based on epoxy/graphene composite film with long molecular weight curing agents have critical roles in the development of advanced polymer composite films that combine mechanical robustness with functional properties such as electrical conductivity for many applications. In this experiment, flexible epoxy/GnP composite film is obtained by using flexible curing agent J2000. A percolation threshold of electrical conductivity was observed at merely 0.97 vol% GnPs, and the composite electrical conductivity increased to 10−6 S/cm at 5.0 vol %. The composite films were mechanically strong enough to be used as a flexible strain sensor. Our sensor can clearly detect the stretching of the forearm skin caused by a fist pulse and back of hand movement and achieve an enhancement of the resistance signal of up to 50%. When the GnPs content reaches 5%, Young's modulus and tensile strength increase to 21 MPa and 1.3 MPa, respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47906.  相似文献   

7.
Multi-walled carbon nanotubes (MWCNTs) were introduced into the diglycidyl ether of a bisphenol A/polyetherimide (DGEBA/PEI) system. A co-continuous phase structure could be formed by the reaction-induced phase separation (RIPS). The MWCNTs localized selectively in PEI-rich phase which was predicted by theoretical calculations of the wetting coefficient (ωa) and then confirmed both by optical microscopy and scanning electron microscopy. The thermomechanical properties of DGEBA/PEI/MWCNTs were studied by dynamic mechanical analysis. As the MWCNTs content increased from 0.5 to 1.0 wt %, storage modulus had a tendency of increasing monotonically from 2491 to 2948 MPa and the values of Tg for epoxy-rich phase were almost unchanged at about 130 °C. Subsequently, the result of electrical and thermal properties measurement for composites indicated that their volume resistivity decreased from 3.29 × 1015 to 3.86 × 106 at 2.0 wt % MWCNTs and thermal conductivity were improved by 36.1% at the same time. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47911.  相似文献   

8.
Polyvinylidene fluoride (PVDF) composites filled with in situ thermally reduced graphene oxide (TRG) and silver nanowire (AgNW) were prepared using solution mixing followed by coagulation and thermal hot pressing. Binary TRG/PVDF nanocomposites exhibited small percolation threshold of 0.12 vol % and low electrical conductivity of approximately 10-7 S/cm. Hybridization of TRGs with AgNWs led to a significant improvement in electrical conductivity due to their synergistic effect in conductivity. The bulk conductivity of hybrids was higher than a combined total conductivity of TRG/PVDF and AgNW/PVDF composites at the same filler loading. Furthermore, the resistivity of hybrid composites increased with increasing temperature, giving rise to a positive temperature coefficient (PTC) effect at the melting temperature of PVDF. The 0.04 vol % TRG/1 vol % AgNW/PVDF hybrid exhibited pronounced PTC behavior, rendering this composite an attractive material for making current limiting devices and temperature sensors.  相似文献   

9.
This research was conducted to fabricate thermoplastic natural rubber/polyaniline (TPNR/PANI) blends via melt blending method using an internal mixer and followed by compression molding. The effects of PANI contents between 1 and 5 wt % PANI in the TPNR blends on the mechanical properties, thermal stability, electrical conductivity (impedance), and morphology observation were investigated. The TPNR/3 wt % PANI sample exhibited the highest tensile strength (3.7 MPa), elongation at break (583%), flexural strength (1.8 MPa), flexural modulus (37.0 MPa), and impact strength (7.1 kJ m−2). From the aspect of thermal properties, it was found that with the addition of PANI, the thermal stability of the TPNR/PANI increased. Comparing to nonconductive TPNR sample, the incorporation of PANI promoted the electrical conductivity characteristic to PANI-filled TPNR blends which showing a magnitude order of 10−9 S cm−1. Scanning electron microscopy micrograph revealed the good distribution of PANI at the optimum content (3 wt % PANI) in the TPNR blends and the good interaction between TPNR and PANI. It can be concluded that the TPNR blends incorporated with a low loading of PANI could be a newly good conductive material. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47527.  相似文献   

10.
A scalable strategy to fabricate thermally conductive but electrically insulating polymer composites was urgently required in various applications including heat exchangers and electronic packages. In this work, multilayered ultrahigh molecular weight polyethylene (UHMWPE)/natural graphite (NG)/boron nitride (BN) composites were prepared by hot compressing the UHMWPE/NG layers and UHMWPE/BN layers alternately. Taking advantage of the internal properties of NG and BN fillers, the UHMWPE/NG layers played a decisive role in enhancing thermal conductivity (TC), while the UHMWPE/BN layers effectively blocked the electrically conductive pathways without affecting the thermal conductive pathways. The in-plane TC, electrical insulation, and heat spreading ability of multilayered UHMWPE/NG/BN composites increased with the increasing layer numbers. At the total fillers loading of 40 wt%, the in-plane TC of multilayered UHMWPE/NG/BN composites with nine layers was markedly improved to 6.319 Wm−1 K−1, outperforming UHMWPE/BN (4.735 Wm−1 K−1) and pure UHMWPE (0.305 Wm−1 K−1) by 33.45% and 1971.80%, respectively. Meanwhile, the UHMWPE/NG/BN composites still maintained an excellent electrically insulating property (volume resistance~5.40×1014 Ω cm ; breakdown voltage~1.52 kV/mm). Moreover, the multilayered UHMWPE/NG/BN composites also exhibited surpassing heat dissipation capability and mechanical properties. Our results provided an effective method to fabricate highly thermal conductive and electrical insulating composites.  相似文献   

11.
A new simplified low temperature deposition method to manufacture flexible transparent conductive electrodes (FTCE) based on conductive polymer composite filled with silver nanowires (AgNWs) was investigated. Polyurethane/AgNWs composite was deposed on a poly(ethylene terephthalate) substrate as a conductive paint in a thin layer lower than 2 μm. The high aspect ratio nanowires influence on the electrical behavior is followed with surface resistivity and optical transparency experiments. The best compromise was obtained with a conductive layer filled with 2.84 vol.% of AgNWs; it exhibits a surface resistivity of 143 Ω/sq with 73% in transmittance. These transparent conductive composites processing in one step with good touching manipulation resistance demonstrate the real interest for this kind of FTCEs technology without indium tin oxide.  相似文献   

12.
To develop thermally conductive PA6 composites with the aim of decreasing filler content, structure-complexed fillers were fabricated. This research presented an effective approach by noncovalent functionalization of poly(dopamine) (PDA) followed by silver nanoparticles decoration to fabricate 3-dimensional (3-D) structured boron nitride hybrids (BN@PDA@AgNPs). BN hybrids were then introduced into PA6 to prepare thermally conductive PA6 composites. The results demonstrated that PA6/BN hybrids (PMB) composites exhibited higher thermal conducivity compared with PA6/BN composites, which revealed more effective construction of thermal conductive network in the composites with the addition of 3-D structured fillers. The effects of BN hybrids with different loadings on thermal stability, mechanical property, as well as electrical resistance of the composites were also analyzed. Overall, the prepared PMB composites exhibited outstanding performance in thermal conductivity, thermal stability, mechanical property, while retaining good electrical insulating property, which showed a potential application in electronic packaging fields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47630.  相似文献   

13.
Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT) generally has a large Seebeck coefficient, and single-walled carbon nanotubes (SWCNTs) have high electrical conductivity. In this work, we prepared F8BT/SWCNT composites to combine the good Seebeck coefficient of the polymer and the excellent electrical conductivity of SWCNTs to achieve enhanced thermoelectric properties. For the composite materials, the maximum power factor of 1 μW mK−2 was achieved when the SWCNT content was 60%, with the maximum ZT value of 4.6 × 10−4. After ferric chloride was employed as the oxidative dopant for the composites, the electrical conductivity of the composites improved significantly. The maximum value of power factor (1.7 μW mK−2) was achieved when the SWCNT content was 60%, and the ZT value of 7.1 × 10−4 was about 1.5 times as high as that of the composites with undoped F8BT. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47011.  相似文献   

14.
Multi-walled carbon nanotube (MWCNT)/high density polyethylene (HDPE) and graphene nanosheets (GNS)/HDPE composites with a segregated network structure were prepared by alcohol-assisted dispersion and hot-pressing. Instead of uniform dispersion in polymer matrix, MWCNTs and GNSs distributed along specific paths and formed a segregated conductive network, which results in a low electrical percolation threshold of the composites. The electrical properties of the GNS/HDPE and MWCNT/HDPE composites were comparatively studied, it was found that the percolation threshold of the GNS/HDPE composites (1 vol.%) was much higher than that of the MWCNT/HDPE composites (0.15 vol.%), and the MWCNT/HDPE composite shows higher electrical conductivity than GNS/HDPE composite at the same filler content. According to the values of critical exponent, t, the two composites may have different electrical conduction mechanisms: MWCNT/HDPE composite represents a three-dimensional conductive system, while the GNS/HDPE composite represents a two-dimensional conductive system. The improving effect of GNSs as conducting fillers on the electrical conductivity of their composites is far lower than theoretically expected.  相似文献   

15.
Carbon fiber-reinforced epoxy (CF/EP) composites have been widely used in aerospace industry, while poor electrical conductivity and interlaminar shear fracture toughness could reduce their safety as structural components in use. In this work, we achieved simultaneous improvement in electrical conductivity and interlaminar shear strength through interleaved multi-walled carbon nanotubes (MWCNTs) doped thermoplastic polyurethane (TPU) conductive thin films (CTFs), which were prepared by a solution casting method. The experimental results showed that the electrical conductivity of the laminates increased by about 13 and 16 times in the transverse and thickness directions with only about 1 wt % MWCNTs content in the laminates. The end-notch flexure (ENF) tests showed that the mode II interlaminar fracture toughness (GIIC) of composites with 10 wt % MWCNTs CTF interleaf shows a significant increase of about 106%. The enhancement mechanism was further explored through microscopic morphological observation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47988.  相似文献   

16.
In this article, lightweight silver@carbon microsphere@graphene (Ag@CMS@GR) composite materials were fabricated. First, carbon microsphere (CMS) was prepared by redox hydrothermal method in the presence of FeCl3 and polyvinyl alcohol. Next, on the surface, silver was deposited to form Ag@CMS particles. And finally, the graphene sheets were added to connect Ag@CMS particles to obtain Ag@CMS@GR composites. Because of the silver nanoparticle may form a conductive pathway, Ag@CMS with relative high content of silver nanoparticles show superior EMI shielding properties. Next, graphene was introduced into Ag@CMS with relative low content of silver particles to form Ag@CMS@GR composites, which is helpful for decreasing the apparent density of composites to around 1.01 g·cm−3. And the composites also show good EMI shielding properties. The highest SE and specific SE values of Ag@CMS@GR reached 39.26 dB and 38.87 dB·cm3·g−1 with 5 wt % graphene content. The EMI shielding mechanism of Ag@CMS@GR composites was discussed. It can be potentially used for lightweight EMI shielding applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48459.  相似文献   

17.
In order to obtain high electrical conductive low-density polyethylene (LDPE) foam, carbon black (CB), single-wall carbon nanotube (SWCNT), and LDPE (CB/SWCNT/LDPE) ternary composite foams were successfully fabricated by chemical compression molding method. The electrical conductivity, mechanical properties, microstructure, density, and crystallinity of the foam were studied in detail. It can be found that CB and SWCNT have synergistic effect. For the CB/SWCNT/LDPE composite foam which containing 19 wt % CB and 0.05 wt % SWCNT, its density is only 0.082 g cm−1 and the electrical conductivity can reach at 2.88 × 10−5 S cm−3, which is far more than 15 orders of magnitudes of pure polyethylene and 4 orders of magnitudes times higher than sample which CB content is 19 wt %. It is noteworthy that ultralow concentration of SWCNT could drastically improve the electrical conductivity and reduce the density of LDPE foams. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48382.  相似文献   

18.
Graphite is a thermally conductive filler. However, when dispersed into high density poly(ethylene) (HDPE) resin, graphite particles tend to agglomerate and requires a compatibilizer to achieve desired thermal/physical properties. In this study, oleic acid (OA), a bio-based additive and polyethylene-polyamines (PEPA) were used to synthesize a new compatibilizer, PEPA-g-OA, containing numerous  NR2 groups. The experimental results showed that PEPA-g-OA can significantly improve the compatibility between graphite particles and the HDPE matrix due to uniform dispersion of graphite in the HDPE matrix. When the graphite content was 25 wt%, the thermal conductivity of the composite recorded 1.2 W m−1 K−1 (three times that of neat HDPE) and the volume resistivity was 1.8 × 109 Ω cm, indicating excellent electrical insulation. Compared to the composites with no graphite content, the properties of the composites with 25 wt% graphite content exhibited narrower melting and crystallization peaks, more stable mechanical properties, and higher ultraviolet aging resistance. Synthesized new bio-based compatibilizer and thermally conductive and electrically insulating composites developed in this study can be useful in different industrial fields for the preparation of the next generation composites.  相似文献   

19.
Heat removal via thermal management materials is attracting more and more attention in the electronic industry. Conventional particle/polymer thermal conductive composites require a high filler loading ratio (>30 vol %), which cause severe thermal interfacial resistance and mechanical issue. In this work, we fabricate tellurium nanowires (NWs)/epoxy nanocomposites via a facile bar coating method. According to Agari model and Maxwell–Eucken model, the as-synthesized ultra-long NWs with high aspect ratio (>100) construct the 3D interconnected thermal conductive network better in resin matrix to facilitate the heat transfer process. The results show that at a low loading ratio of 2.4 vol %, this nanocomposite exhibits the out-of-plane and in-plane thermal conductivity of 0.378 and 1.63 W m−1 K−1, respectively, which is 189 and 715% higher than that of pure epoxy resin. Importantly, good stability, and flexibility of nanocomposites are well maintained. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47054.  相似文献   

20.
A simple, fast, and cost-effective method to fabricate conductive paths on insulating Ag-containing polyamide 6 (PA6) composites by laser beam treatment is presented in this study. First, Ag-hybrid microparticles (Ag-MP) with a total metal load of up to 19 wt% are synthesized based on a reactive encapsulation strategy utilizing activated anionic polymerization of ε-caprolactam in solution, in the presence of Ag nanoparticles. Then, the Ag-MP are compression molded into plates (Ag-PL) on which a scanning laser treatment is applied to create conductive paths in their selected parts. A comparison between structural, morphological, and thermal properties of the Ag-MP and the molded Ag-PL composites is performed. The electric conductive properties of the Ag-loaded hybrid materials are investigated before and after laser ablation, and it is concluded that the laser treatment results in selected paths with widths in the range of 500 µm with conductivity values in the range of 1.12 to 8.90 S m−1 while the untreated Ag-PA6 surface remains isolating with conductivity values of 1.27 × 10−08 S m−1. These results prove that applying laser ablation with controlled parameters on initially insulating Ag-PL composites can efficiently produce conductive line patterns in composite plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号