首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(8):9371-9374
Synthesis of vanadium carbide–copper nanocomposite was achieved via mechanochemical combustion method from reactant mixture of V2O5, CuO, C and Mg powders. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). X-ray diffraction investigations indicated that the combustion products were V4C3, V2C and Cu phases. Microstructural studies showed that a nanostructured powder with a mean particle size of about 100 nm was procured in the samples milled for 90 min.  相似文献   

2.
A simple method to decorate multiwalled carbon nanotubes (MWCNTs) with Au, Ag and Cu nanoparticles is illustrated. The method consists in directly depositing the selected metals by thermal evaporation on the carbon nanotubes. Comparative measurements carried out on samples that differ in the quantity and type of the deposited metal, reveal that isolated discrete particles form on the nanotube outer wall for all three metals. The CNT-based composites have been investigated by scanning and transmission electron microscopy to determine the size, shape and distribution of the nanoparticles. The results indicate that the quantity of evaporated metal only affects the nanoparticle size and not the average particle density. Particle composition was determined by X-ray photoelectron spectroscopy study. The results are discussed in terms of metal nanoparticle–tube interactions, an important issue for the fundamental and practical applications of similar MWCNT based composites.  相似文献   

3.
Polymer Bulletin - A simple method for preparation of hybrid magnetic nanocomposites consisting of bimetallic Co–Fe nanoparticles and polyphenoxazine (PPOA) is described. The nanocomposites...  相似文献   

4.
BackgroundProanthocyanidin has shown to have beneficial effects on dentin bonding via its collagen cross-linking and protease inhibitory effects.ObjectiveThis study evaluated the effect of incorporation of 1–3% PA into a dental adhesive on durability of resin–dentin bond.Materials and methodsThe experimental adhesive was first formulated by combining 50 wt% comonomer mixtures with 50 wt% ethanol. PA was then added to the ethanol-solvated adhesive to yield three groups of adhesives at concentrations of 1.0 wt%, 2.0 wt% and 3.0 wt%. The PA-free adhesive served as control. Flat dentin surfaces from forty extracted third molars were etched with 32% phosphoric acid and the specimens were randomly assigned to one of the four adhesive groups. Two layers of experimental adhesives were applied to etched dentin and light-cured for 20 s after solvent evaporation. Composite build-ups were performed using Filtek Z250 (3M ESPE). The bonded teeth were divided into three subgroups for different methods of storage: (1) 24 h indirect water exposure (IE), (2) 6 M IE and (3) 6 M direct water exposure (DE). After the designated period of water storage, the bonded teeth were sectioned into 0.9 mm×0.9 mm beams for bond strength testing. Bond strength data were evaluated by two-way ANOVA and Tukey׳s tests (α=0.05). Interfacial nanoleakage was examined using a field-emission scanning electron microscopy. Two-way ANOVA and Tukey׳s tests were used to examine the effects of PA concentration and water exposure on bond strength and percentage of nanoleakage (α=0.05).ResultsTwo-way ANOVA showed that the factors, water exposure and PA concentration had a significant effect on bond strength (p<0.001). Interaction between the two factors was also significant (p<0.001). Bond strength of all four adhesives decreased with PA concentrations and ageing. Type of water exposure had no effect on the bond strength of PA-incorporated adhesive; while direct water exposure significantly reduced the bond strength of PA-free adhesive. Conversely, the factors, water exposure and PA concentration showed a significant effect on nanoleakage percentage (p<0.001). Interaction between the two factors was not significant (p>0.05).ConclusionIncorporation of proanthocyanidin into a dental adhesive did not prevent resin–dentin bond degradation over time.  相似文献   

5.
In situ filling of nanomaterials into polymers facilitates the dispersion of the nanofillers and their interface combination with the matrices, and reduces the agglomeration encountered in the nanocomposites prepared by a mechanical mixing method. Polytetrafluoroethylene (PTFE) nanocomposites filled with SiO2 nanospheres (SNS) were fabricated by an in situ sol–gel method in this paper. The SNS in situ filled was highly dispersed in PTFE and showed an excellent combination with the matrix, and the fabricated SNS/PTFE nanocomposites were found a pronounced improvement in stiffness, hardness, glass transition temperature, and hydrophobicity in comparison with the pristine PTFE and the ones prepared by mechanical mixing with the same content. Furthermore, significantly reduced coefficients of friction and volume wear rates were observed on the SNS/PTFE nanocomposites prepared by in situ sol–gel. An operating temperature high up to 200°C and very low volume wear rate were accessible on the optimized SNS/PTFE nanocomposite by in situ filling. The methodology, in situ filling of nanofillers into matrices, might pave a way to prepare nanocomposites with excellent mechanical, thermal, and tribological properties.  相似文献   

6.
TaC–TaSi2 composites were fabricated at 1700°C by an in situ reaction/hot pressing method using Ta, Si, and graphite as initial materials. TaSi2 content was 0–100 vol%. The microstructure and mechanical properties of the composites were investigated. It was found that the relative densities of composites were above 97.5% when the volume content of TaSi2 was above 10%. The TaC/10 vol% TaSi2 composite presented the highest flexural strength of 376 MPa. When the TaSi2 content was 30–50 vol%, the composites showed the highest fracture toughness of about 4.3 MP·am1/2. In addition, the composites could retain high Young's modulus up to at least 1525°C.  相似文献   

7.
Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electrical connection continues to be a significant hindrance toward their large-scale implementation. Here, we demonstrate in situ–directed growth of such organic nanostructures between pre-fabricated contacts, which are source–drain gold electrodes on a transistor platform (bottom-gate) on silicon dioxide patterned by a combination of optical lithography and electron beam lithography. The dimensions of the gold electrodes strongly influence the morphology of the resulting structures leading to notably different electrical properties. The ability to control such nanofiber or nanoflake growth opens the possibility for large-scale optoelectronic device fabrication.  相似文献   

8.
The Friedel–Crafts alkylation reaction has been applied to reactively compatibilize a ternary blend of high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). The reactions were carried out in an internal mixer using varying catalyst concentrations. The resulting compatibilizer was quantified after Soxhlet extraction. In addition, p-substitution due to the grafting of alkyl groups onto the PS benzene ring was identified via nuclear magnetic resonance spectroscopy. The size of the PS domain in the reactive compositions is decreased by 80%. Moreover, the phase in which PS droplets were dispersed varied, that is, in the nonreactive blends they were found in the PP phase and in the reactive blends they shifted toward the HDPE phase. The effect of the compatibilizing agent was to improve the mechanical properties of the blend. Even with the lowest catalyst content, the properties of elongation-at-break, tensile strength, toughness, and elastic modulus showed improvements. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48295.  相似文献   

9.
ABSTRACT

ZrB2–ZrC–SiC is one of the ultra-high-temperature ceramic composites with excellent properties. In this research, high-purity ZrB2–ZrC–SiC nanopowders were synthesised using a carbothermal reduction reaction at a relatively low temperature (1370°C) from cost-effective zirconium(IV) chloride by a sol–gel method. The effect of heat treatment temperature on the synthesis of ZrB2–ZrC–SiC composite powder was studied. X-ray diffractometry results showed that the phases ZrB2, β-SiC and ZrC were synthesised at 1370°C. The mean crystallite sizes for each of the phases were calculated using the Scherrer method. The specific surface area for the sample calcined at 1370°C was 81.479?m2?g?1. SEM observation revealed that the particles had a size lower than 250?nm. Backscattered electron image and map analysis with scanning electron microscopy showed that a suitable phase homogeneity was achieved, as confirmed by energy-dispersive X-ray spectroscopy.  相似文献   

10.
In this study, two composition ZrB2–ZrC–WB composites were synthesized by reactive hot-pressing of Zr + B4C + WC powder mixtures at 1900 °C. The microstructure of the resulting composites was characterized by a combination of scanning electron microscopy and X-ray diffraction. It is seen that highly-dense ZrB2–ZrC–WB composites with a homogenous fine-microstructure were obtained after the sintering. The mechanical behavior of the composites was evaluated using by testing under four-point bend testing at room and high temperatures. The results show that the high-temperature strength of the ZrB2–ZrC–WB composites was substantially improved, compared to ZrB2–ZrC-based composites without WB. In addition, the elastic properties, electrical conductivity, hardness and fracture toughness of the composites were measured at room temperature. The results reveal that these properties were comparable to those of ZrB2–ZrC-based composites without WB.  相似文献   

11.
Adding SiC directly to MgO–C refractories possesses the disadvantages of low dispersion and interfacial bonding strength. Herein, the in situ synthesized SiC was introduced into the MgO–SiC–C refractories to maintain the original excellent performance of MgO–C refractories and reduce the carbon dissolution in molten steel. With the increase of Si and C content in raw materials, the morphology of SiC changed from whisker to network, whose growth mechanism was vapor–solid and vapor–liquid–solid. The network structure and uniform distribution of SiC improved the thermal shock resistance of MgO–SiC–C refractories. According to the analysis of molecular dynamics simulation by Materials Studio software, SiC strengthened the relationship between periclase and graphite to enhance the structure of the compound.  相似文献   

12.
To improve the performances of a composite based on silica and unsaturated polyester resin, modification of silica surface and addition of a dispersing agent are required. The surface of raw silica was modified with vinyltrimethoxysilane in acidic conditions, adding methacrylic acid. Moreover, to enhance the compatibility between silica and polyester resin, a block copolymer which reacts as a dispersing agent was added. The mixture of these components is named “Giral.” The mechanism of interaction of the different components of the “Giral” with the raw silica is described. Adding this formulation to a mixture of polyester resin and silica leads to a decrease of the viscosity of the polyester resin/silica system and the mechanical properties of the composite thus formed are improved.  相似文献   

13.
The growth of nitrogen-doped carbon nanofibers (N-CNFs) by the decomposition of ethylene–ammonia mixtures on a Ni–Cu catalyst was studied using in situ X-ray diffraction analysis. The catalyst consists of the Ni-enriched (Ni0.85Cu0.15) and Cu-enriched (Cu0.95Ni0.05) alloys. It was found that the growth of N-CNFs, similar to the growth of carbon nanofibers, proceeds on the Ni-enriched alloy, whereas the Cu-enriched alloy remains inactive. During the N-CNF growth, carbon dissolves in the Ni0.85Cu0.15 alloy with the formation of a oversaturated solid solution, but without formation of bulk nickel carbide. It was supposed that nitrogen also dissolves in this alloy, but the driving force is the primary dissolution of carbon.  相似文献   

14.
In this review, the recent advances in the development of in situ Raman spectroscopy and electrochemical techniques and their application for the study of lithium-ion batteries are revisited. It is demonstrated that, during a relatively short period of time (1995–2013), the spectroelectrochemical techniques used for the investigation of battery components, benefited directly from the tremendous advances of Raman technology. The most important step was the implementation of confocal Raman microscopy in the battery research, which opened the way to new and more sophisticated applications. This review shows how the discovery of new Raman techniques such as surface-enhanced Raman scattering, tip-enhanced Raman spectroscopy, spatially offset Raman spectroscopy as well as the integration of Raman spectrometers into non-optical microscopes, for example AFM and SEM, allowed to perform two or more analytical techniques on the same sample region, with an exceptionally high resolution. All these progresses led to new insights into battery materials and components such as electrodes and electrolytes, and helped to understand the electrode/electrolyte interface phenomena. This enhanced understanding allowed a deeper insight into important phenomena, as e.g., battery aging and the dynamic nature of the solid electrolyte interfaces in lithium batteries. The high relevance of the information provided by these techniques in the progress of battery modeling is another positive contribution. Another area of high practical significance for the battery field is the screening of electrode materials, which is facilitated by the availability of the data provided by spectroscopic methods.  相似文献   

15.
Nitrobenzene (CNC-1), trifluoromethyl benzene (CNC-2) modified and polystyrene-grafted (CNC-g) cellulose nanocrystals in polystyrene (PS)-N,N dimethylformamide (DMF) solutions were electrospun and collected as stretched and aligned fibers on a rotating drum. Scanning electron microscope pictures showed significant alignment in the case of unmodified and nitrobenzene-modified CNC-1/PS nanocomposite fibers once the linear speed of rotor reached to 15 m s−1. Fiber diameter decrease was more strong with rotor speed increase in the case of trifluoromethyl benzene modified (CNC-2) and polystyrene-grafted (CNC-g) cellulose nanocrystals/PS systems. Dynamic mechanical analysis including storage and elastic modulus of electrospun-oriented fibers were performed on surface-modified and polymer-grafted CNC/PS samples. According to α transition peak, the increase in the glass-transition temperature with filler concentration was the highest in polymer-grafted CNC-g/PS composite fibers. It was due to the interpenetration of grafted polymer brushes and free polymer chains in continuous phase and resulted in restrictions of motions of polymer chains in the PS matrix. The elastic moduli of nitrobenzene (CNC-1) and trifluoromethyl benzene (CNC-2)-modified CNC-filled PS composite fibers agreed well with percolation model, which indicates the CNC–CNC interactions and network formation with an increase in concentration. Magnitude of the elastic modulus of polymer grafted CNC-g at 0.33 vol % in PS was significantly higher than the prediction from percolation theory. It was due the immobilized polymer chains around CNC-g particles. However, grafted polymer chains, at higher CNC concentrations acted like stickers among CNC particles and caused CNC agglomerates with entrapped free polystyrene from the matrix, thus caused a decrease in the elastic modulus. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48942.  相似文献   

16.
17.
In situ surface synthesis of Ca–Mg–Al hydrotalcite (HT) on inorganic ceramic membrane (CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature on surface synthesis of HT were examined. The as-prepared HT/CM samples were characterized by XRD and SEM and an in sit growth mechanismof HT on CMwas proposed. KF/HT/CMobtained by loading potassium fluoride (KF) on the HT layer by impregnation and calcination method was used as catalyst for transesterification between palm oil and methanol. The comparison of KF/HT/CMand pure KF/HT powder under identical reaction conditions shows that the production of fatty acid methyl ester is equivalent, which means that the use of inorganic catalytic membrane in the transesterification is a viable alternative.  相似文献   

18.
19.
High temperature oxidation of ZrB2 and the effect of SiC on controlling the oxidation of ZrB2 in ZrB2–SiC composites were studied in situ, in air, using X-ray diffraction. Oxidation was studied by quantitatively analyzing the crystalline phase changes in the samples, both non-isothermally, as a function of temperature, up to ~1650 °C, as well as isothermally, as a function of time, at ~1300 °C. During the non-isothermal studies, the formation and transformation of intermediate crystalline phases of ZrO2 were also observed. The change in SiC content, during isothermal oxidation studies of ZrB2–SiC composites, was similar in the examined temperature range, regardless of sample microstructure and composition. Higher SiC content, however, markedly retarded the oxidation rate of the ZrB2 phase in the composites. A novel approach to quantify the extent of oxidation by estimating the thickness of the oxidation layer formed during oxidation of ZrB2 and ZrB2–SiC composites, based on fractional conversion of ZrB2 to ZrO2 in situ, is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号