首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Edible oils contain naturally occurring phytonutrients and therefore exhibit numerous beneficial health effects. However, the phytonutrients tend to degrade in different extent with storage duration and temperature. In this study, the impact of storage conditions on the stability of phytonutrients, including vitamin E, carotenoid, phytosterols and squalene, and oil quality, including free fatty acids (FFA), peroxide value (PV), anisidine value (AV), and oxidative stability index (OSI) of red palm-pressed mesocarp olein, palm olein, extra virgin olive oil, and sunflower oil were investigated. The oils were stored in three conditions, 23°C (with light and without light) and 35°C (without light). Results showed that the retention percentages of phytonutrients where in the range of 0%–100% for vitamin E, 51.24%–83.63% for carotenoid, 83.40%–100% for phytosterols and 27.94%–100% for squalene. Pearson correlation analysis between phytonutrients and oil quality of oils in different storage conditions showed that correlation coefficient values (r) were in the range of −1 to 0 for FFA, −1 to 0.22 for PV, −1 to 0.33 for AV, and −0.23 to 1 for OSI, implying that correlations between both variables are not in same direction. Degradation studies of phytonutrients using zero-order kinetic model where optimum-case conditions exhibited highest half-life (t1/2) among the three conditions. In conclusion, storage conditions and synergistic effect affected the phytonutrients stability in the oils and oil quality in different extent. In general, storage at ambient temperature and dark condition contributed to the best phytonutrients retention and oil quality.  相似文献   

2.
The oxidative susceptibilities of low density lipoproteins (LDL) isolated from rabbits fed high-fat atherogenic diets containing coconut, palm, or soybean oils were investigated. New Zealand white rabbits were fed atherogenic semisynthetic diets containing 0.5% cholesterol and either (i) 13% coconut oil and 2% corn oil (CNO), (ii) 15% refined, bleached, and deodorized palm olein (RBDPO), (iii) 15% crude palm olein (CPO), (iv) 15% soybean oil (SO), or (v) 15% refined, bleached, and deodorized palm olein without cholesterol supplementation [RBDPO(wc)], for a period of twelve weeks. Total fatty acid compositions of the plasma and LDL were found to be modulated (but not too drastically) by the nature of the dietary fats. Cholesterol supplementation significantly increased the plasma level of vitamin E and effectively altered the plasma composition of long-chain fatty acids in favor of increasing oleic acid. Oxidative susceptibilities of LDL samples were determined by Cu2+-catalyzed oxidation which provide the lag times and lag-phase slopes. The plasma LDL from all palm oil diets [RBDPO, CPO, and RBDPO(wc)] were shown to be equally resistant to the oxidation, and the LDL from SO-fed rabbits were most susceptible, followed by the LDL from the CNO-fed rabbits. These results reflect a relationship between the oxidative susceptibility of LDL due to a combination of the levels of polyun-saturated fatty acids and vitamin E. Based on a paper presented at the PORIM International Palm Oil Congress (PIPOC) held in Kuala Lumpur, Malaysia, 1993.  相似文献   

3.
Teng KT  Nagapan G  Cheng HM  Nesaretnam K 《Lipids》2011,46(4):381-388
Postprandial lipemia impairs insulin sensitivity and triggers the pro-inflammatory state which may lead to the progression of cardiovascular diseases. A randomized, crossover single-blind study (n = 10 healthy men) was designed to compare the effects of a high-fat load (50 g fat), rich in palmitic acid from both plant (palm olein) or animal source (lard) versus an oleic acid-rich fat (virgin olive oil) on lipemia, plasma glucose, insulin and adipocytokines. Serum triacylglycerol (TAG) concentrations were significantly lower after the lard meal than after the olive oil and palm olein meals (meal effect P = 0.003; time effect P < 0.001). The greater reduction in the plasma non-esterified free fatty acids levels in the lard group compared to the olive oil meal was mirrored by the changes observed for serum TAG levels (P < 0.05). The magnitude of response for plasma glucose, insulin and adipocytokines [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and leptin] were not altered by the type of dietary fats. A significant difference in plasma IL-1β was found over time following the three high fat loads (time effect P = 0.036). The physical characteristics and changes in TAG structure of lard may contribute to the smaller increase in postprandial lipemia compared with palm olein. A high fat load but not the type of fats influences concentrations of plasma IL-1β over time but had no effect on other pro-inflammatory markers tested in the postprandial state.  相似文献   

4.
Human milk fat substitutes (HMFS) having similarity in (TAG) composition to human milk fat (HMF) were prepared by Lipozyme RM IM‐catalyzed interesterification of lard blending with selected oils in a packed bed reactor. Four oil blends with high similarity in fatty acid profiles to HMF were first obtained based on the blending model and then the blending ratios were screened based on TAG composition similarity by enzymatic interesterification in a batch reactor. The optimal ratio was determined as lard:sunflower oil:canola oil:palm kernel oil:palm oil:algal oil:microbial oil = 1.00:0.10:0.50:0.13:0.12:0.02:0.02. This blending ratio was used for a packed bed reactor and the conditions were then optimized as residence time, 1.5 h; reaction temperature, 50 °C. Under these conditions, the obtained product showed high degrees of similarity in fatty acid profile with 39.2 % palmitic acid at the sn‐2 position, 0.5 % arachidonic acid (n‐6) and 0.3 % docosahexaenoic acid (n‐3) and the scores for the degree of similarity in TAG composition was increased from 58.4 (the oil blend) to 72.3 (the final product). The packed bed reactor could be operated for 7 days without significant decrease in activity. The final product presented similar melting and crystallization profiles to those of HMF. However, due to the loss of tocopherols during deacidification process, the oxidative stability was lower than that of the oil blend. This process for the preparation of HMFS from lard with high similarity in TAG composition by physical blending and enzymatic interesterification, as optimized by mathematical models in a packed bed reactor, has a great potential for industrialization.  相似文献   

5.
Palm oil that has been interesterified to produce a higher proportion of palmitic acid (16:0) in the sn‐2 position reduces postprandial lipemia in young, normolipidemic men and women, but effects in older subjects with higher fasting triacylglycerol (TAG) concentrations are unknown. We tested the hypothesis that high‐fat meals rich in interesterified palm olein (IPO) decrease lipemia and alter plasma lipoprotein fraction composition compared to native palm olein (NPO) in men aged 40–70 years with fasting TAG concentrations ≥1.2 mmol/L. Postprandial changes in plasma lipids following meals containing 75 g fat (NPO and IPO) were compared using a randomized, double‐blind crossover design (n = 11). Although there were no significant differences in plasma TAG concentrations between meals over the total 6‐h postprandial measurement period, IPO resulted in a decreased plasma TAG response during the first 4 h of the postprandial period (iAUC 1.65 mmol/L h, 95 % CI 1.01–2.29) compared to NPO (iAUC 2.33 mmol/L h, 95 % CI 1.58–3.07); meal effect P = 0.024. Chylomicron fraction TAG concentrations at 4–6 h were slightly reduced following IPO compared to NPO [NPO?IPO mean difference 0.29 mmol/L (95 % CI ?0.01–0.59), P = 0.055]. There were no differences in IDL fraction TAG, cholesterol or apolipoprotein B48 concentrations following IPO compared with NPO. In conclusion, consuming a meal containing palm olein with a higher proportion of 16:0 in the sn‐2 position decreases postprandial lipemia compared to native palm olein during the early phase of the postprandial period in men with higher than optimal fasting triacylglycerol concentrations.  相似文献   

6.
Triacylglycerol (TAG) isomers have been reported to have differing physical and nutritional properties. The analysis of TAG isomers is therefore important for understanding the physical properties of lipids as well as their digestion and absorption. However, methods for the quantitative analysis of TAG regioisomers and enantiomers in vegetable oils and biological samples are still under development. Recently, methods using recycle high-performance liquid chromatography (HPLC) and silver ion column-HPLC have been reported. However the recycle HPLC method requires more than 1 hour, in general, for each sample that is analyzed. Furthermore, existing methods are unable to quantify regioisomers and enantiomers simultaneously. Thus, we aimed to develop a practical method to simultaneously quantify regioisomers and enantiomers of TAG. Three isomers of sn-POO, OPO, and OOP were separated by supercritical fluid chromatography coupled with triple quadrupole mass spectrometer (SFC/MS/MS) using a CHIRALPAK® IG-U column with acetonitrile and methanol as mobile phase. The separation was completed in 40 min, which is a shorter run time than the conventional techniques published to date. Linear calibration curves with standards were obtained and used to quantify sn-OPO, sn-POO, and sn-OOP in extra virgin olive oil, refined olive oil, palm oil, palm olein, and interesterified palm olein.  相似文献   

7.
Palm olein was modified via lipase-catalyzed acidolysis reaction to obtain fatty acid composition and positional distribution similar to human milk fat. In the reaction, a free fatty acid mix containing 23.23 % docosahexaenoic (DHA), 31.42 % gamma-linolenic (GLA), and 15.12 % palmitic acid was employed. The DHA and GLA were incorporated into the structured lipid (SL) product to improve its nutritional value. Response surface methodology (RSM) was used to investigate the effects of reaction time and substrate mole ratio (palm olein to a free fatty acid mix) on the amount of palmitic acid at the sn-2 position of SL triacyglycerols (TAG), and on the total DHA and GLA incorporation. Gram-scale production of SL was performed using the conditions predicted by RSM to maximize the content of palmitic acid at the sn-2 position. Verification of the predictions from RSM confirmed its practical utility. The resulting SL had 35.11 % palmitic acid at the sn-2 position, with 3.75 % DHA and 5.03 % GLA. Differential scanning calorimetry and HPLC analyses of the TAG revealed changes in their polymorphic profiles and TAG molecular species of SL compared to palm olein. The SL from this study can potentially be used in infant formula formulations.  相似文献   

8.
The aim of the study was to determine the effect of oil degradation on the content of glycidyl esters (GEs) in oils used for the frying of French fries. As frying media, refined oils such as rapeseed, palm, palm olein and blend were used. French fries were fried for 40 h in oils heated to 180 °C in 30‐min cycles. After every 8 h of frying, fresh oil and samples were analyzed for acid and anisidine values, color, refractive index, fatty acid composition, and content and composition of the polar fraction. GEs were determined by LC–MS. Hydrolysis and polymerization occurred most intensively in palm olein, while oxidation was reported for rapeseed oil. The degradation of oil caused increased changes in the RI of frying oils. Losses of mono‐ and polyunsaturated fatty acids were observed in all samples, with the largest share in blend. The highest content of GE found in fresh oil was in palm olein (25 mg kg?1) and the lowest content of GE was found in rapeseed oil (0.8 mg kg?1). The palm oil, palm olein and blend were dominated by GEs of palmitic and oleic acids, while rapeseed oil was dominated by GE of oleic acid. With increasing frying time, the content of GEs decreased with losses from 47 % in rapeseed oil to 78 % in palm oil after finishing frying.  相似文献   

9.
The utilization of palm olein in the production of zero‐trans Iranian vanaspati through enzymatic interesterification was studied. Vanaspati fat was made from ternary blends of palm olein (POL), low‐erucic acid rapeseed oil (RSO) and sunflower oil (SFO) through direct interesterification of the blends or by blending interesterified POL with RSO and SFO. The slip melting point (SMP), the solid fat content (SFC) at 10–40 °C, the carbon number (CN) triacylglycerol (TAG) composition, the induction period (IP) of oxidation at 120 °C (IP120) and the IP of crystallization at 20 °C of the final products and non‐interesterified blends were evaluated. Results indicated that all the final products had higher SMP, SFC, IP of crystallization and CN 48 TAG (trisaturated TAG), and lower IP120, than their non‐interesterified blends. However, SMP, SFC, IP120, IP of crystallization and CN 48 TAG were higher for fats prepared by blending interesterified POL with RSO and SFO. A comparison between the SFC at 20–30 °C of the final products and those of a commercial low‐trans Iranian vanaspati showed that the least saturated fatty acid content necessary to achieve a zero‐trans fat suitable for use as Iranian vanaspati was 37.2% for directly interesterified blends and 28.8% for fats prepared by blending interesterified POL with liquid oils.  相似文献   

10.
Seed oils from four legume cultivars of Pisum sativum, grown in Japan, were extracted and classified by thin‐layer chromatography (TLC) into seven fractions: hydrocarbons (HC; 0.5–0.9 wt‐%), steryl esters (SE; 0.8–2.4 wt‐%), triacylglycerols (TAG; 31.2–40.3 wt‐%), free fatty acids (FFA; 1.3–2.7 wt‐%), 1,3‐diacylglycerols (1,3‐DAG; 1.0–1.8 wt‐%), 1,2‐diacylglycerols (1,2‐DAG; 1.0–2.2 wt‐%) and phospholipids (PL; 52.2–61.3 wt‐%). All lipid samples had high amounts of total unsaturated fatty acids, representing 75.0–84.3 wt‐% for TAG and PL. Molecular species and fatty acid distributions of TAG, isolated from the total lipids in the peas, were analyzed by a combination of argentation‐TLC and GC. Eighteen different molecular species were detected. With a few exceptions, the main TAG components were SMD (7.5–10.3 wt‐%), M2D (8.0–8.9 wt‐%), SD2 (12.0–18.3 wt‐%), SMT (9.8–11.0 wt‐%), MD2 (12.0–20.3 wt‐%), SDT (9.7–10.8 wt‐%), M2T (2.5–7.3 wt‐%) and D3 (14.5–15.2 wt‐%) (where S denotes a saturated fatty acid, M denotes a monoene, D denotes a diene, and T denotes a triene). It seems that the four cultivars were highly related to each other based on the fatty acid composition of the TAG as well as the distribution profiles in the different TAG molecular species. In general, these results suggest that there are no essential differences (p >0.05) in the oil components among the four cultivars.  相似文献   

11.
A study to optimize the use of oleoresin rosemary extract, sage extract, and citric acid in refined, bleached, and deodorized (RBD) palm olein during deep-fat frying of potato chips was performed using response surface methodology. Results showed that the natural antioxidants used in this study retarded oil deterioration, as evidenced by retention of fatty acid profiles. The linoleic to palmitic (C18∶2/C16∶0) ratio was chosen as the parameter for optimizing the use of natural antioxidants in RBD palm olein during deep-fat frying. Linoleic (R 2=0.946) and palmitic (R 2=0.825) acids were found to be the most important dependent variables, giving highest R 2 values to various antioxidant treatments after 25 h of frying. All three antioxidants had independent significant (P<0.05) effects on the C18∶2/C16∶0 ratio. In fact, significant effects on the C18∶2/C16∶0 ratio of RBD palm olein were also given by a second-order form. A combination of 0.076% oleoresin rosemary extract, 0.066% sage extract, and 0.037% citric acid produced the optimal retention of the essential fatty acid C18∶2. In addition, a synergistic effect among these antioxidants on the fatty acid ratio of RBD palm olein was found.  相似文献   

12.
An electronic nose (zNose™) was applied to the detection of adulteration of virgin coconut oil. The system, which is based on a surface acoustic wave sensor was used to generate a pattern of volatile compounds present in the samples. Virgin coconut oil was mixed with refined, bleached and deodorized palm kernel olein at a level of adulteration from 1 to 20% (wt/wt). Adulterant peaks were identified from the chromatogram profile and fitted to a curve using linear regression. The best relationship (R 2 = 0.91) was obtained between the peak tentatively identified as methyl dodecanoate and the percentage of palm kernel olein added. Pearson’s correlation coefficients (r) of 0.92 and 0.89 were obtained between adulterant peak methyl dodecanoate and of the iodine and peroxide values, respectively. Principal component analysis (PCA) was used to differentiate between pure and adulterated samples. The PCA provided good differentiation of samples with 74% of the variation accounted for by PC 1 and 17% accounted for by PC 2. Pure samples formed a separate cluster from all of the adulterated samples.  相似文献   

13.
Medium-chain triglycerides (MCT) that contain caprylic acid (C8:0) and capric acid (C10:0) have immense medicinal and nutritional importance. Coconut oil can be used as a starting raw material for the production of MCT. The process, based on the interchange reaction between triglycerides and methyl esters of medium-chain fatty acids by chemical catalyst (sodium methoxide) or lipase (Mucor miehei) catalyst, appears to be technically feasible. Coconut oils with 25–28.3% (w/w) and 22.1–25% (w/w) medium-chain fatty acids have been obtained by chemical and lipase-catalyzed interchange reactions. Coconut olein has also been modified with C8:0 and C10:0 fatty acids, individually as well as with their mixtures, by chemical and lipase-catalyzed interchange reactions. Coconut olein is a better raw material than coconut oil for production of mediumchain fatty acid-rich triglyceride products by both chemical and lipase-catalyzed processes.  相似文献   

14.
By using a preliminary heat-bleach at 250 C the Emmerie-Engel method has been adapted for the determination of total tocopherols (including tocotrienols) in crude as well as refined palm oil, olein and stearin. Total tocopherol contents found were: Crude palm oil, 794 ppm (n=10); RBD palm oil, 563 ppm (n=13); RBD palm olein, 643 ppm (n=40); RBD palm stearin, 261 ppm (n=19), where n is the number of samples analyzed. During the detergent fractionation no tocopherols were lost, but the tocopherols were concentrated in the olein fraction. The fate of the tocopherols during degumming, bleaching and steam refining/deodorizing of Crude palm olein containing 978 ppm total tocopherol was studied. Over the whole refining process only 8% of the tocopherols were lost, 62% of the original tocopherols were retained in the RBD palm olein, while the remaining 30% were concentrated in the fatty acid distillate which contained 7,040 ppm tocopherol.  相似文献   

15.
Different emulsions based on six types of vegetable oils (sunflower, canola, sesame, olive, coconut, and palm olein) were studied to investigate the role of the oil phase in the stability and physicochemical characteristics of oil-in-water emulsions prepared with gum tragacanth. The results indicated that the stability, rheological parameters, and size distribution of emulsions were dependent on the oil type. Based on the interfacial tension value, the type of oil did not have a significant effect on the gum tragacanth-emulsifying properties. The formulation based on sunflower and coconut oil led to producing more stable emulsion and a sample containing palm olein resulted in an unstable emulsion. Rheological analysis revealed that the sample based on palm olein showed the lowest consistency coefficient (2.10 ± 0.05 Pas n), elastic modulus (3.90 ± 0.21 Pa), and energy of cohesion (80.87 ± 1.1 J m−3). This study revealed that using oils with lower viscosity and higher density led to the higher stability of the emulsion samples.  相似文献   

16.
Composition and thermal profile of crude palm oil and its products   总被引:2,自引:0,他引:2  
Gas-liquid chromatography and high-performance liquid chromatography (HPLC) were used to determine fatty acids and triglyceride (TG) compositions of crude palm oil (CPO), refined, bleached, and deodorized (RBD) palm oil, RBD palm olein, and RBD palm stearin, while their thermal profiles were analyzed by differential scanning calorimeter (DSC). The HPLC chromatograms showed that the TG composition of CPO and RBD palm oil were quite similar. The results showed that CPO, RBD palm oil, RBD olein, and superolein consist mainly of monosaturated and disaturated TG while RBD palm stearin consists mainly of disaturated and trisaturated TG. In DSC cooling thermograms the peaks of triunsaturated, monosaturated and disaturated TG were found at the range of −48.62 to −60.36, −25.89 to −29.19, and −11.22 to −1.69°C, respectively, while trisaturated TG were found between 13.72 and 27.64°C. The heating thermograms of CPO indicated the presence of polymorphs β2′, α, β2′, and β1. The peak of CPO was found at 4.78°C. However, after refining, the peak shifted to 6.25°C and became smaller but more apparent as indicated by RBD palm oil thermograms. The heating and cooling thermograms of the RBD palm stearin were characterized by a sharp, high-melting point (high-T) peak temperature and a short and wide low-melting point (low-T) peak temperature, indicating the presence of occluded olein. However, for RBD palm olein, there was only an exothermic low-T peak temperature. The DSC thermograms expressed the thermal behavior of various palm oil and its products quite well, and the profiles can be used as guidelines for fractionation of CPO or RBD palm oil.  相似文献   

17.
Partial hydrolysis of palm olein catalyzed by phospholipase A1 (Lecitase Ultra) in a solvent‐free system was carried out to produce diacylglycerol (DAG)‐enriched palm olein (DEPO). Four reaction parameters, namely, reaction time (2–10 h), water content (20–60 wt‐% of the oil mass), enzyme load (10–50 U/g of the oil mass), and reaction temperature (30–60 °C), were investigated. The optimal conditions for partial hydrolysis of palm olein catalyzed by Lecitase Ultra were obtained by an orthogonal experiment as follows: 45 °C reaction temperature, 44 wt‐% water content, 8 h reaction time, and an enzyme load of 34 U/g. The upper oil layer of the reaction mixture with an acid value of 54.26 ± 0.86 mg KOH/g was first molecularly distilled at 150 °C to yield a DEPO with 35.51 wt‐% of DAG. The DEPO was distilled again at 250 °C to obtain a DAG oil with 74.52 wt‐% of DAG. The composition of the acylglycerols of palm olein and the DEPO were analyzed and identified by high‐performance liquid chromatography (HPLC) and HPLC/electrospray ionization/mass spectrometry. The released fatty acids from the partial hydrolysis of palm olein catalyzed by phospholipase A1 showed a higher saturated fatty acid content than that of the raw material.  相似文献   

18.
In this study, a total of 22 domestic monocultivar (Ayval?k and Memecik cv.) virgin olive oil samples taken from various locations of the Aegean region, the main olive growing zone of Turkey, during two (2001–2002) crop years were classified and characterized by well‐known chemometric methods (principal component analysis [PCA] and hierarchical cluster analysis [HCA]) on the basis of their triacylglycerol (TAG) components. The analyses of TAG components (LLL and major fractions LOO, OOO, POO, PLO, SOO, and ECN 42–ECN 50) in the oil samples were carried out according to the HPLC method described in a European Union Commission (EUC) regulation. In all analyzed samples the value of trilinolein (LLL), the least abundant TAG, did not exceed the maximum limit of 0.5 % given by the EUC regulation for different olive oil grades. The ranges of abundant TAG, namely LOO, OOO, POO, PLO, and SOO, were 13.30–16.08, 37.27–46.36, 21.39–23.24, 4.93–7.03, and 4.72–6.00 %. The TAG data of Aegean virgin olive oils were similar to those of products from important olive‐oil‐producing Mediterranean countries was determined. Also, the estimation of major fatty acids (FA) was carried out by using a formula based on TAG data. The PCA results showed that some TAG components have an important role in the characterization and geographical classification of 22 monocultivar virgin olive oil. The Aegean virgin olive oil samples were successfully classified and discriminated into two main groups as the North and South (growing) subzones or Ayval?k and Memecik olives (cultivars) according to the HCA results based on experimental TAG data and calculated major FA profile.  相似文献   

19.
The paper describes a method of fractionating vegetable, animal and fish oils, and in particular palm oil. The method involves addition of a medium comprising two common solvents to the semisolid oils. On centrifugation, the olein and stearin are separated by the medium in the middle. Thirteen media made up from binary combinations of nine solvents, viz. water, propylene glycol, glycerine, methanol, ethanol,n-propanol, isopropanol (IPA), acetone and butanone, are found to be effective in olein-stearin separation. However, only the water/IPA and water/methanol systems have been studied in detail. The aqueous IPA provides a higher yield of olein than water/ methanol but intersolubility between oil and medium is also greater. The fractionation process can be carried out at any suitable temperature. Fractionation of the special prime bleached (SPB) palm oil at 16 C yields an olein with a cloud point of 4.8 C. Some hybrid palm oils produce a large quantity of low cloud point olein which can be bleached readily. The process can be extended to include degumming and neutralization by using an alkaline medium for centrifugation. The olein fractions obtained have been found to be free of phosphatides and the free fatty acids reduced to as low as 0.02%. Metal-scavenging agents have also been added to the medium in an attempt to remove copper and iron. The development of this process into a continuous one has been demonstrated on the AlfaLaval LAPX 202 Separator. Fractionation of crude palm oil using a density gradient provides seven fractions of different characteristics. The iodine values vary from 37.5 to 57.4 and the unsaturated fatty acids range from 32.7% to 51.2%. Triglyceride analysis by carbon numbers shows great differences in the C48 and C52 constituents of the fractions. aThe volume ratio of oil to medium in each case was 1:1. The separation involved the oil and wax.  相似文献   

20.
Cocoa butter equivalent (CBE) formulation, especially the compatibility of palm oil based CBE with cocoa butter, is of special interest to chocolate manufacturers. Traditionally palm oil is fractionated to obtain high-melting stearin and olein with a clear point of around 25 C, the latter serving as cooking oil. Recently, palm oil has been fractionated to recover an intermediate fraction known as palm mid-fraction (PMF), which is suitable for CBE formulations. Generally, production of PMF is based on a three-step procedure. However, a dry fractionation system, which includes selective crystallization and removal of liquid olein by means of a hydraulic press, has been developed. Iodine value, solid content (SFI) at different temperatures, cooling curves (Shukoff 0°) and triglyceride/fatty acid composition determination confirmed effectiveness of the procedure followed. A direct relationship between yield, quality of PMF and crystallization temperature during fractionation has been achieved. Yield of 60% for olein of IV 64–67 has been achieved. Yield of 30% for PMF of IV 36–38 and 10% for high melting stearin of IV of 20–22 are also being achieved. High-melting stearin may be used in oleochemical applications, soaps, food emulsifiers and other industrial applications such as lubricating oil. Olein fraction, especially after flash hydrogenation thereby reducing the IV to 62/64, has excellent frying and cooking oil characteristics. Palm olein is also suitable as dietary fat and in infant formulation. Studies on interesterification of high-melting stearin with olein showed possibilities to formulate hardstocks for margarine and spread formulations, even without using hydrogenated fat components. Palm kernel and coconut fats or fractions or derived products are used for confectionery products as partial CB replacers and as ice cream fats and coatings. Coconut oil also serves as a starting material for the production of medium-chain triglycerides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号