首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the effects of 1-Ethyl-3-methylimidazolium tetrafluoroborate ionic liquid on CO2/CH4 separation performance of symmetric polysulfone membranes are investigated. Pure polysulfone membrane and ionic liquid-containing membranes are characterized. Field emission scanning electron microscopy (FE-SEM) is used to analyze surface morphology and thickness of the fabricated membranes. Energy dispersive spectroscopy (EDS) and elemental mapping, Fourier transform infrared (FTIR), thermal gravimetric (TGA), X-ray diffraction (XRD) and Tensile strength analyses are also conducted to characterize the prepared membranes. CO2/CH4 separation performance of the membranes are measured twice at 0.3 MPa and room temperature (25 °C). Permeability measurements confirm that increasing ionic liquid content in polymer-ionic liquid membranes leads to a growth in CO2 permeation and CO2/CH4 selectivity due to high affinity of the ionic liquid to carbon dioxide. CO2 permeation significantly increases from 4.3 Barrer (1 Barrer=10-10 cm3(STP)·cm·cm-2·s-1·cmHg-1, 1cmHg=1.333kPa) for the pure polymer membrane to 601.9 Barrer for the 30 wt% ionic liquid membrane. Also, selectivity of this membrane is improved from 8.2 to 25.8. mixed gas tests are implemented to investigate gases interaction. The results showed, the disruptive effect of CH4 molecules for CO2 permeation lead to selectivity decrement compare to pure gas test. The fabricated membranes with high ionic liquid content in this study are promising materials for industrial CO2/CH4 separation membranes.  相似文献   

2.
Enhancing the performance of gas separation membranes is one of the major concerns of membrane researchers. Thus, in this study, poly(ether-block-amide) (Pebax)/polyetherimide (PEI) thin-film composite membranes were prepared and their CO2/CH4 gas separation performance was investigated by means of pure and mixed gases permeation tests. To improve the properties of these membranes, halloysite nanotubes (HNT) were added to Pebax layer at different loadings of 0.5, 1, 2, and 5 wt % to form Pebax-HNT/PEI membranes. Scanning electron microscopy, gas sorption, X-ray diffraction, Fourier-transform infrared, and differential scanning calorimetry tests were also performed to investigate the impact of HNT on structure and properties of prepared membranes. Results showed that both CO2/CH4 selectivity and CO2 permeance increased by adding HNT to Pebax layer up to 2 wt %. By increasing HNT loading to 5 wt %, the CO2/CH4 selectivity decreased from 32 to 18, while CO2 permeance increased from 3.25 to 4.2 GPU. Pebax/PEI and Pebax-HNT/PEI membranes containing 2 wt % of HNT were tested using CO2/CH4 gas mixtures at different feed CO2 concentrations and feed pressure of 4 bar. The results showed that with increasing CO2 concentration from 20 to 80 vol %, CO2/CH4 selectivity of Pebax/PEI composite membranes increased by 19%, while, in Pebax-HNT/PEI membrane, CO2/CH4 selectivity decreased by 40%. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48860.  相似文献   

3.
Recently, the selective removal of H2S and CO2 has been highly desired in natural gas sweetening. Herein, four novel azole-based protic ionic liquids (PILs) were designed and prepared through one-step neutralization reaction. The solubility of H2S (0–1.0 bar), CO2 (0–1.0 bar), and CH4 (0–5.0 bar) was systematically measured at temperatures from 298.2 to 333.2 K. NMR and theoretical calculation were used to investigate the reaction mechanism between these PILs and H2S. Reaction equilibrium thermodynamic model (RETM) was screened to correlate the H2S solubility. Impressively, 1,5-diazabicyclo[4,3,0] non-5-ene 1,2,4-1H-imidazolide ([DBNH][1,2,4-triaz]) shows the highest H2S solubility (1.4 mol/mol or 7.3 mol/kg at 298.2 K and 1.0 bar) and superior H2S/CH4 (831) and CO2/CH4 (199) selectivities compared with literature results. Considering the excellent absorption capacity of H2S, high H2S/CH4, and CO2/CH4 selectivity, acceptable reversibility, as well as facile preparation process, it is believed that azole-based PILs provide an attractive alternative in natural gas upgrading process.  相似文献   

4.
Modified ultra-porous ZIF-8 particles were used to prepare novel ZIF-8/Pebax 1657 mixed matrix membranes (MMMs) on PES support for separation of CO2 from CH4 using spin coating method. TEM and SEM were used to characterize modified ZIF-8 particles. SEM was also used to investigate the morphology of synthesized MMMs. The MMMs with thinner selective layer showed higher CO2 permeability and lower CO2/CH4 selectivity in permeation tests compared to MMMs with thicker selective layer. The plasticization was recognized as the main reason for rise in CO2 permeability and drop in CO2/CH4 selectivity of thinner MMMs. The gas sorption results showed that the high permeability of CO2 in MMMs is mainly due to the high solubility of this gas in MMMs, leading to high CO2/CH4 solubility selectivity for MMMs. The fractional free volume and void volume fraction of MMMs increased as the thickness of membrane decreased. Applying higher mixed feed pressures and permeation tests temperatures resulted in increase in CO2 permeability and decrease in CO2/CH4 selectivity. At highest testing temperature (60 °C), the CO2 permeability of synthesized MMMs with thinner selective layer remarkably increased.  相似文献   

5.
The thermoplastic poly(urethane-urea) (PUU) was synthesized using polyethylene-glycol, 4,4?-methylenediphenyl diisocyanate (MDI), and 1,2-ethandiamine (EDA) as a chain extender. A novel multilayer composite membrane consisting of the synthesized PUU, as a selective layer, a silicon rubber, as an interlayer, and the polyacrylonitrile (PAN) microporous support was prepared for the removal of acid gas. Moreover, the physical properties of the synthesized PEG-based polyurethane were investigated. Based on Differential Scanning Calorimeter (DSC) and ANDFourier Transform Infra-red Spectroscopy (FTIR) analyses, a higher microphase separation of hard and soft segments was observed for PUU. The permeabilities of pure CO2, pure CH4, and a ternary mixture of CH4, CO2, and H2S through the multilayer composite membrane were measured at different temperatures and pressures. The maximum values of selectivity, i.e., 52 and 15 for H2S/CH4 and CO2/CH4, respectively, were found at 25°C and 5 bar. The permeances of H2S and CO2 in the ternary mixture decreased on increasing the feed pressure because of membrane compression. The higher the temperature, the higher was the permeability of the gases due to the more molecular movement of the polymer chains. Therefore, the gas selectivity in the synthesized composite membrane decreased by increasing the temperature. The experiments showed that replacing the pure-gas measurements with the gas mixture measurements can substantially produce more relevant results.  相似文献   

6.
The solubilities of H2S and CO2 in four protic ionic liquids (PILs)—methyldiethanolammonium acetate, methyldiethanolammonium formate, dimethylethanolammonium acetate, and dimethylethanolammonium formate were determined at 303.2–333.2 K and 0–1.2 bar. It is shown PILs have higher absorption capacity for H2S than normal ionic liquids (ILs) and the Henry's law constants of H2S in PILs (3.5–11.5 bar at 303.2 K) are much lower than those in normal ILs. In contrast, the solubility of CO2 in PILs is found to be a magnitude lower than that of H2S, implying these PILs have both higher absorption capacity for H2S and higher ideal selectivity of H2S/CO2 (8.9–19.5 at 303.2 K) in comparison with normal ILs. The behavior of H2S and CO2 absorption in PILs is further demonstrated based on thermodynamic analysis. The results illustrate that PILs are a kind of promising absorbents for the selective separation of H2S/CO2 and believed to have potential use in gas sweetening. © 2014 American Institute of Chemical Engineers AIChE J 60: 4232–4240, 2014  相似文献   

7.
This study is focused on the development of ionic liquids (ILs) based polymeric membranes for the separation of carbon dioxide (CO2) from methane (CH4). The advantage of ILs in selective CO2 absorption is that it enhances the CO2 selective separation for the ionic liquid membranes (ILMs). ILMs are developed and characterized with two different ILs using the solution‐casting method. Three different blend compositions of ILs and polysulfone (PSF) are selected for each ILMs 10, 20, and 30 wt %. Effect of the different types of ILs such as triethanolamine formate (TEAF) and triethanolamine acetate (TEAA) are investigated on PSF‐based ILMs. Field emission scanning electron microscopy analysis of the membranes showed reasonable homogeneity between the ILs and PSF. Thermogravimetric analysis showed that by increasing the ILs loading thermal stability of the membranes improved. Mechanical analysis on developed membranes showed that ILs phase reduced the amount of plastic flow of the PSF phase and therefore, fracture takes place at gradually lower strains with increasing ILs content. Gas permeation evaluation was carried out on the developed membranes for CO2/CH4 separation between 2 bar to 10 bar feed pressure. Results showed that CO2 permeance increases with the addition of ILs 10–30 wt % in ILMs. With 20–30 wt % TEAF‐ILMs and TEAA‐ILMs, the highest selectivity of a CO2/CH4 53.96 ± 0.3, 37.64 ± 0.2 and CO2 permeance 69.5 ± 0.6, 55.21 ± 0.3 is observed for treated membrane at 2–10 bar. The selectivity using mixed gas test at various CO2/CH4 compositions shows consistent results with the ideal gas selectivity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45395.  相似文献   

8.
《Polymer Composites》2017,38(4):759-766
Two types of polymeric ionic liquids (PILs) modified porous silica for CO2 sorption were synthesized by the polymerization of dialkylphosphate di‐butyl phosphate [VYIM][Bu2PO4] and 1‐allyl‐3‐methylimidazolium tetrafluoroborate [AMIM][BF4] with alkoxyl‐modified silica. The PILs‐modified silica (SiO2‐P[VYIM][Bu2PO4] and SiO2‐P[AMIM][BF4]) were evaluated by CO2 adsorption isotherms at 273 K for investigating the porous structures. The adsorption and desorption behaviors of CO2 (at 298, 313, and 333 K) and N2 (at 313 K) up to 0.2 MPa were also investigated using a gravimetric method. In comparison with bare silica, the grafting of PILs on the support surface leads to a loss of microporosity, resulting in a slight decrease in CO2 sorption capacity. The difference of CO2 sorption capacity between SiO2‐P[VYIM][Bu2PO4] and SiO2‐P[AMIM][BF4] is little, especially under 0.1 MPa. CO2/N2 selectivity is however notably improved, and especially [AMIM][BF4] modified silica shows the best performance. The homogeneous surface diffusion model (HSDM) was used to estimate the diffusivities and good agreement between experimental values and fitting curves was obtained. The diffusion coefficients of CO2 in the PILs‐modified silica are level with that of bare silica at level of 10−7−10−8 m2/s, about two to three orders of magnitude faster than that of reported [BMIM][BF4]. POLYM. COMPOS., 38:759–766, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
CO2 sorption capacities of the neat and silica‐supported 1‐butyl‐3‐methylimidazolium‐based ionic liquids (ILs) were measured under atmospheric pressure. The silica‐supported ILs were synthesized by the impregnation‐vaporization method and charactrized by N2 adsorption/desorption and thermogravimeteric analysis (TGA). Evaluation of the effects of influential factors on sorption capacity demonstrated that by increase of the temperature, flow rate, and the weight percentage of ILs in sorbents, the sorption capacity decreases. Among the sorbents, [Bmim][TfO] and SiO2‐[Bmim][BF4](50) had the highest capacity. By increasing the IL portion in SiO2‐[Bmim][BF4], the selectivity for CO2 to CH4 could be improved. The CO2‐rich sorbents could be easily recycled.  相似文献   

10.
Polyetherimide (PEI) was used as a polymeric additive for preparing an asymmetric polyethersulfone (PES) membrane for the separation of CO2 from CH4. In pure gas experiments, the higher skin layer thickness and the lower porosity of the sub layer for the membrane prepared from the polymer blend with the composition of 98:2 lead to an increase in CO2/CH4 selectivity and a decrease in the CO2 permeance in contrast with a pristine PES. For higher PEI contents, the higher fractional free volume of the membranes improves the gas permeance and reduces the CO2/CH4 selectivity. The incorporation of PEI in PES reduces the CO2 sorption in PES via decreasing the non-equilibrium free volume and imparts antiplasticization properties to the membrane.  相似文献   

11.
Porous poly(ionic liquid)s based on copolymer of 1-allyl-3-methyimidazolium tetrafluoroborate and acrylonitrile with 70:30 monomer ratio were prepared and characterized for CO2 sorption. The well-developed pore structure are formed in all the poly(ionic liquid)s and the pore size distribution(PSD) mainly concentrates in 0.4 ~ 0.8 nm. The effects of different pore-forming agents and their amount on the porous structure and CO2 sorption were also discussed. For example, porous poly(ionic liquid) treated with n-heptane as the pore-forming agent and the amount of n-heptane 16 mL has the highest CO2 sorption capacity of 1.43 wt % at 273 K and 0.101 MPa.  相似文献   

12.
The incorporation of imidazolium‐based ionic liquids into a poly(ether sulfone) (PES) polymeric membrane resulted in a dense and void‐free polymeric membrane. As determined through the ideal gas permeation test, the carbon dioxide (CO2) permeation increased about 22% compared to that of the pure PES polymeric membrane whereas the methane (CH4) permeation decreased tremendously. This made the CO2/CH4 ideal separation increase substantially by more than 100%. This study highlighted the utilization of imidazolium‐based ionic liquids in the synthesis of ionic liquid polymeric membranes (ILPMs). Two different ionic liquids were used to compare the CO2 separation performance through the membranes. The glass‐transition temperatures (Tgs) of ILPMs were found to be lower than the Tg of the pure PES polymeric membranes; this supported the high CO2 permeation of the ILPMs due to the increase in PES flexibility caused by ionic liquid addition. The results also draw attention to new trends of ionic liquids as a potential green candidates for future membrane synthesis. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43999.  相似文献   

13.
Membrane-based technology is an attractive alternative in terms of CO2 separation. Pebax-based membranes are regarded as potential candidates for CO2 separation due to the favorable interaction between its poly (ethylene oxide) chains with CO2 molecules and inorganic fillers. However, the separation performance for CO2/CH4 mixture is still suffered from the moderate gas permeability and selectivity. To overcome this problem, in this work, amino-functionalized zeolite imidazolate framework (ZIF-7-NH2) nanocrystals were used as fillers to blend with Pebax 1657 for fabricating mixed-matrix membranes (MMMs). XRD, Brunauer–Emmett–Teller (BET), scanning electron microscope, and 1H nuclear magnetic resonance characterization indicated that ZIF-7-NH2 with the highest crystallinity was synthesized. Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and Young's modulus showed that it has good interfacial interaction. Gas separation test results showed that both the CO2 permeability and CO2/CH4 selectivity of the 31 wt% ZIF-7-NH2/Pebax MMMs increased by 80 and 170%, respectively. The improved performance is attributed to the addition of ZIF-7-NH2 nanocrystals and the favorable interfacial interactions between the polymer and ZIF-7-NH2 nanocrystals. Furthermore, the polyvinylidene fluoride supported hollow fiber composite membranes also exhibit the long-term stability for CO2/CH4 separation.  相似文献   

14.
In this research esterified canola oil diol (COD) was used to synthesize a green thermoplastic polyurethane. The mixture of synthesized COD as a polyester and polytetramethylene‐glycol as a polyether with different molar ratios were used to synthesize a thermoplastic polyurethane. Membranes were prepared by solution casting technique and nano‐silica particles were used to improve their gas separation performance. The effects of COD segments on phase separation and thermal properties of blocky segments of polyurethanes were evaluated using Fourier transform infrared spectroscopy and thermal gravimetric analysis. Results showed that phase separation behavior of the synthesized polyurethane was significantly increased with COD content. The COD segments showed high tendency to interact with hard segments of polyurethane in a way that new domains with higher thermal stability is created. Permeability of pure CO2, CH4, N2, and He gases were taken using constant pressure method at different pressures. Nano‐silica particles showed high inclination to interact with COD segments and significantly influenced the phase separation as well as gas permeation properties of polyurethane. Interactions of nano‐silica particles with the soft segments of polyurethane increased the glassy behavior of polymer and improved the CO2/CH4, CO2/N2, and CO2/He ideal selectivities (permselectivities). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45979.  相似文献   

15.
CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel’s properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6–97.0%) and surface areas (270–744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g−1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30% AEROPIL.  相似文献   

16.
CO2 emission from anthropogenic sources has raised worldwide environmental concerns and hence proficient energy paradigm has tilted towards CO2 capture. Membrane technology is one of the efficient technologies for CO2 separation since it is environmentally friendly, inexpensive, and offers high surface areas. Various approaches are discussed to improve membrane performance focusing mainly on permeability and selectivity parameters. Different types of fillers are incorporated to reach the Robeson's upper bound curve. In this review, polymer‐inorganic nanocomposite membranes for the separation of CO2, CH4, and N2 from various gas mixtures are comprehensively discussed. Metal organic frameworks (MOFs) and ionic liquid (ILs) mixed‐matrix membranes are also considered.  相似文献   

17.
Ionic liquid modified poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was synthesized by introducing imidazolium-based, pyridinium-based, and ammonium-basd ionic liquid groups to the methyl position of PPO. Membranes were prepared from the different types of ionic liquid modified PPO (IPPO), and the permeability of CO2 and N2 in these membranes was characterized. For having the CO2-philic ionic liquid groups in the structure, the CO2 solubility of the IPPO is better than that of PPO, while the CO2 diffusivity in the IPPO is proportional to glass transition temperatures. The adsorption and desorption of CO2 in the IPPO were also investigated, and the results manifest that the adsorption and desorption of CO2 in IPPO are completely reversible, which makes the polymer promising as solid adsorbent materials for CO2 separation.  相似文献   

18.
Integrally skinned asymmetric gas separation membranes of polyethersulfone (PES)/polyurethane (PU) blend were prepared using supercritical CO2 (SC-CO2) as a nonsolvent for the polymer solution. The membrane consisted of a dense and a porous layer, which were conjoined to separate CO2 from CH4. The FTIR, DSC, tensile and SEM tests were performed to study and characterize the membranes. The results revealed that an increase in SC-CO2 temperature causes an increment in permeance and a decrease in membrane selectivity. Furthermore, by raising the pressure, both permeance and selectivity increased. The modified membrane with SC-CO2 had much higher selectivity, about 5.5 times superior to the non-modified membrane. This higher selectivity performance compared to previous works was obtained by taking the advantages of both using partial miscible blend polymer due to the strong polar–polar interaction between PU PES and SC-CO2 to fabricate the membrane. The response surface methodology (RSM) was applied to find the relationships between several explanatory variables and CO2 and CH4 permeance and CO2/CH4 selectivity as responses. Finally, the results were validated with the experimental data, which the model results were in good agreement with the available experimental data.  相似文献   

19.
Copolymers based on glassy and rubbery units have been developed to take advantage of both domains to enhance solubility and diffusivity. In this study, a series of gas separation membranes from polysulfone (PSF) containing ethylene glycol were synthesized via nucleophilic substitution polycondensation. The structures of copolymers were characterized by nuclear magnetic resonance spectra, Fourier transform infrared spectra, and thermal gravity analysis. The permeability and selectivity of the membranes were studied at different temperatures of 25–55 °C and pressures of 0.5–1.5 atm using single gases CO2 and CH4. Gas permeation measurements showed that copolymers with different contents of poly(ethylene glycol) exhibited different separation performances. For example, the membrane from PSF-PEG2000-20 containing 20 wt% poly(ethylene glycol) showed better performance in terms of ideal selectivity over the other seven copolymer membranes. The highest ideal CO2/CH4 selectivity was 43.0 with CO2 permeability of 6.4 Barrer at 1.5 atm and 25 °C.  相似文献   

20.
Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for CO2 separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO2 selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix membrane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO2 separation membrane and the key issue in this area are concluded  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号