首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The NOx NH3-SCR performance of several Cu and Fe catalysts supported on BETA and ZSM-5 zeolites has been studied in single SCR and double NSR–SCR configuration, and the activity related to the nature and reducibility of metal species on the catalyst surface. Intermediate ammonia formed in NSR improved greatly NOx conversion at the exit of the double NSR–SCR configuration, which was practically totally converted to N2.  相似文献   

2.
MnOx-WO3/TiO2NH3选择性还原NOx的催化性能与动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
吴碧君  肖萍  刘晓勤 《化工学报》2011,62(4):940-946
研究了Mn-W/TiO2用于NH3选择性催化还原NOx体系的催化反应性能,在很宽的温度范围和各种气体条件下,该催化剂显示了较高的催化活性.在GHSV 18900 h-1、100~350℃条件下,NOx转化率高达80.3%~99.6%,Nz选择性达98.7%~100%;当反应气体中有0.01%SO2(分压比,下同)和6%...  相似文献   

3.
The mechanism of selective catalytic reduction (SCR) of NOx with NH3 over Fe/MFI was studied using in situ FTIR spectroscopy. Exposing Fe/MFI first to NH3 then to flowing NO + O2 or using the reversed sequence, invariably leads to the formation of ammonium nitrite, NH4NO2. In situ FTIR results in flowing NO + NH3 + O2 at different temperatures show that NH3 is strongly adsorbed and reacts with impinging NOx. The intensity of the NH4NO2 bands initially increases with temperature, but passes through a maximum at 120 °C because the nitrite decomposes to N2 + H2O. The mechanistic model rationalizes that the consumption ratio of NO and NH3 is close to unity and that the effect of water vapor depends on the reaction temperature. At high temperature H_2O enhances the rate because it is needed to form NH4NO2. At low temperature, when adsorbed H2O is abundant it lowers the rate because it competes with NOx for adsorption sites.  相似文献   

4.
In this study, new Fe2O3 based materials are developed for the selective catalytic reduction (SCR) of NOx by NH3 in diesel exhaust. As a result of the catalyst screening, performed in a synthetic model exhaust, ZrO2 is considered to be the most effective carrier for Fe2O3. The modification of the Fe2O3/ZrO2 system with tungsten leads to drastic increase of SCR performance as well as pronounced thermal stability. These results show that tungsten acts as bifunctional component. The highest catalytic activity is observed for ZrO2 that is coated with 1.4 mol% Fe2O3 and 7.0 mol% WO3 (1.4Fe/7.0W/Zr). By the use of this catalyst quantitative conversion of NOx is obtained between 285 and 430 °C with selective formation of N2. Here, the turnover frequency of NOx per Fe atom is found to be 35 × 10−5 s−1 that indicates a high catalytic performance. The SCR activity of the 1.4Fe/7.0W/Zr material is decreased in the presence of H2O and CO2, whereas it is increased by NO2.Temperature programmed reduction by H2 (HTPR) analyses show that the Fe sites of the 1.4Fe/7.0W/Zr catalyst are mainly in the form of crystalline Fe2O3, whereby relatively small oxide entities are also present. The strongly aggregated Fe2O3 species are associated with the presence of the promoter tungsten. Based upon stationary catalytic examinations as well as diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) studies we postulate an Eley Rideal type mechanism for SCR on 1.4Fe/7.0W/Zr catalyst. The mechanistic model includes a redox cycle of the active Fe sites. As first reaction step, we assume dissociative adsorption of NH3 that leads to partial reduction of the iron as well as to production of very reactive amide surface species. These amide intermediates are supposed to react with gaseous NO to form N2 and H2O. In the final step, the reduced Fe sites be regenerated by oxidation with O2. As a side reaction of SCR, imide species, originated from decomposition of amide, are oxidized by NO2 or O2 into NO.  相似文献   

5.
The selective catalytic reduction (SCR) of NO x over zeolite H-ZSM-5 with ammonia was investigated using in situ FTIR spectroscopy and flow reactor measurements. The adsorption of ammonia and the reaction between NO x , O2 and either pre-adsorbed ammonia or transiently supplied ammonia were investigated for either NO or equimolar amounts of NO and NO2. With transient ammonia supply the total NO reduction increased and the selectivity to N2O formation decreased compared to continuous supply. The FTIR experiments revealed that NO x reacts with ammonia adsorbed on Brønsted acid sites as NH4 + ions. These experiments further indicated that adsorbed -NO2 is formed during the SCR reaction over H-ZSM-5.  相似文献   

6.
Geopolymer-based ceramics as catalysts or catalyst supports have attracted tremendous interests in recent years owing to their low-cost and zeolite-like structure characteristics. However, most of the reported works focus on alkaline-based geopolymers, whereas the catalytic performance of acid based geopolymer has not yet been evaluated. This study aims to investigate the application potential of phosphoric acid–based geopolymer (PAG) for selective catalytic reduction (SCR) of NOx with NH3. To this end, the SCR reactivity of PAG and metal oxide (MnOx)-loaded PAG were evaluated. Moreover, an activated carbon-based hard template route was proposed for further enhancing the SCR reactivity of the PAG-based catalyst. The as-prepared catalyst under the optimal condition exhibited a high NO conversion greater than 85% in a wide temperature range of 250–350°C, which is among the top literature-reported values, demonstrating its promising application prospect. A systematical X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, Brunauer–Emmet–Teller, NH3-temperature-programed desorption, and H2-temperature-programed reduction spectroscopic analyses were also conducted to better understand the structure evolution of PAG under elevated temperature and the SCR catalytic mechanism of the acid-based geopolymer catalysts. This study would provide valuable information on the potential application prospect of PAG and its modified form for efficient NOx removal.  相似文献   

7.
A global kinetic model which describes H2‐assisted NH3‐SCR over an Ag/Al2O3 monolith catalyst has been developed. The intention is that the model can be applied for dosing NH3 and H2 to an Ag/Al2O3 catalyst in a real automotive application as well as contribute to an increased understanding of the reaction mechanism for NH3‐SCR. Therefore, the model needs to be simple and accurately predict the conversion of NOx. The reduction of NO is described by a global reaction, with a molar stoichiometry between NO, NH3 and H2 of 1:1:2. Further reactions included in the model are the oxidation of NH3 to N2 and NO, oxidation of H2, and the adsorption and desorption of NH3. The model was fitted to the results of an NH3‐TPD experiment, an NH3 oxidation experiment, and a series of H2‐assisted NH3‐SCR steady‐state experiments. The model predicts the conversion of NOx well even during transient experiments. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4325–4333, 2013  相似文献   

8.
The selective catalytic reduction (SCR) of NOx by urea as a reducing agent was carried out over fresh and sulfated CuO/γ‐Al2O3 catalysts in a fluidized‐bed reactor. The optimum temperature ranges for NO reduction on the fresh and sulfated CuO/γ‐Al2O3 catalysts were 300–350 °C and 400–450 °C, respectively. NO reduction with the sulfated CuO/γ‐Al2O3 catalyst was somewhat higher than that with the fresh CuO/γ‐Al2O3 catalyst. N2O formation increased with increasing reaction temperature. Ammonia (NH3) slip increased with increasing gas velocity and decreased with increasing reaction temperature. Copyright © 2003 Society of Chemical Industry  相似文献   

9.
A series of monolithic catalysts consisting of a layer of selective catalytic reduction (SCR) catalyst deposited on top of lean NOx trap (LNT) catalyst were synthesized for lean reduction of NOx (NO&NO2) with H2 and CO. The LNT catalyst exhibited a rather low NOx conversion below 250 °C due to CO inhibition. The top SCR layer comprising Cu/ZSM5 significantly increased the NOx conversion at low temperature by its reaction with NH3 formed during the regeneration phase. The addition of CeO2 to the LNT layer promoted the water gas shift reaction (CO + H2O ? H2 + CO2). The WGS reaction mitigated the CO inhibition and the generated H2 enhanced the low-temperature catalyst regeneration. The ceria addition decreased the performance at high temperatures due to increased oxidation of NH3. The ceria loading was optimized by applying a non-uniform axial profile. A dual-layer catalyst with an increasing ceria loading axial profile improved the performance over a wide (low and high) temperature range.  相似文献   

10.
The formation of N2O in NH3–SCR deNOx reaction over an on-site-used commercial V2O5–WO3/TiO2 catalyst has been measured using an on-line IR system with a modified gas cell. The N2O could be formed by the SCR and NH3 oxidation reactions. These two reactions were particularly enhanced with the on-site-used sample.  相似文献   

11.
An overview is given of the selective catalytic reduction of NOx by ammonia (NH3‐SCR) over metal‐exchanged zeolites. The review gives a comprehensive overview of NH3‐SCR chemistry, including undesired side‐reactions and aspects of the reaction mechanism over zeolites and the active sites involved. The review attempts to correlate catalyst activity and stability with the preparation method, the exchange metal, the exchange degree, and the zeolite topology. A comparison of Fe‐ZSM‐5 catalysts prepared by different methods and research groups shows that the preparation method is not a decisive factor in determining catalytic activity. It seems that decreased turnover frequency (TOF) is an oft‐neglected effect of increasing Fe content, and this oversight may have led to the mistaken conclusion that certain production methods produce highly active catalysts. The available data indicate that both isolated and bridged iron species participate in the NH3‐SCR reaction over Fe‐ZSM‐5, with isolated species being the most active.  相似文献   

12.
In SCR denitrification technology, the conventional coprecipitation method has the disadvantages of high temperature and difficulty in controlling the precipitation rate. Various CexCuTiO2 catalysts were synthesized using ice-melting (CexCuTi-Ice) and conventional coprecipitation (CexCuTi-Con) methods for the selective catalytic reduction (SCR) of NO with NH3. Ce0.4CuTi-Ice catalyst exhibited excellent catalytic activity among the CexCuTiO2 catalysts, and 80% NOx conversion was achieved within a temperature range of 250–375 °C, exceeding that of Ce0.4CuTi-Con catalyst by 20%; in addition, N2 selectivity was nearly 100%. To elucidate the release characteristics of the precursor solution during ice-melting synthesis, the changes of Cu and Ce concentrations in the solution were investigated by ICP-OES. The precursor solution was released at a slow rate via the ice-melting method, resulting in a large surface area, small crystallite sizes, and effective uniform nanoparticles with abundant active species and increased surface acidity. The promoted mechanism could be attributed to the enhanced oxidation of NO to NO2 at low temperatures and the rapid reaction between NO species and coordinated NH3 at high temperatures. © 2022 Society of Chemical Industry (SCI).  相似文献   

13.
Fe‐Cu‐SSZ‐13 catalysts were prepared by aqueous solution ion‐exchange method based on the one‐pot synthesized Cu‐SSZ‐13. The catalysts were applied to the selective catalytic reduction (SCR) of NO with NH3 and characterized by the means of XRD, UV‐Vis, EPR, XPS, NH3‐TPD, and so on. The selected Fe‐Cu‐SSZ‐13‐1 catalyst exhibited the high NO conversion (>90%) in the wide temperature range (225–625°C), which also showed good N2 selectivity and excellent hydrothermal stability. The results of XPS showed that the Cu and Fe species were in the internal and outer parts of the SSZ‐13 crystals, respectively. The results of UV‐Vis and EPR indicated that the monomeric Cu2+ ions coordinated to three oxygen atoms on the six‐ring sites and Fe monomers are the real active species in the NH3‐SCR reaction. Furthermore, the influence of intracrystalline mass‐transfer limitations on the Fe‐Cu‐SSZ‐13 catalysts is related to the location of active species in the SSZ‐13 crystals. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3825–3837, 2015  相似文献   

14.
Simulation of SCR equipped vehicles using iron-zeolite catalysts   总被引:1,自引:0,他引:1  
Iron-catalysts, based on ZSM-5 (FeZSM5) and Cuban natural Mordenite (FeMORD) zeolites have been prepared by a conventional ion-exchange method and their catalytic activity in the selective catalytic reduction (SCR) of NO with ammonia was studied in the presence of H2O and SO2. A commercial SCR catalyst (CATCO) based on V2O5–WO3–TiO2, was also studied as a reference. This paper presents the experimental results of using these catalysts without toxic vanadium and also exploits a neural network-based approach to predict NOx conversion efficiency of three SCR catalysts. The mathematical functions derived have been integrated into a numerical model to simulate diesel road vehicles equipped with SCR catalysts such as those studied here. The main results indicate that despite toxic vanadium and N2O formation, CATCO shows better NOx conversion efficiencies. However, FeMORD does not produce N2O and performs better than the FeZSM5. The simulation results on real cycles show lower level of NOx for heavy-duty and light-duty diesel vehicles compared with homologation load cycles.  相似文献   

15.
Kinetic modeling, in combination with flow reactor experiments, was used in this study for simulating NH3 selective catalytic reduction (SCR) of NOx over Cu-ZSM-5. First the mass-transfer in the wash-coat was examined experimentally, by using two monoliths: one with 11 wt.% wash-coat and the other sample with 23 wt.% wash-coat. When the ratio between the total flow rate and the wash-coat amount was kept constant similar results for NOx conversion and NH3 slip were obtained, indicating no significant mass-transfer limitations in the wash-coat layer. A broad range of experimental conditions was used when developing the model: ammonia temperature programmed desorption (TPD), NH3 oxidation, NO oxidation, and NH3 SCR experiments with different NO-to-NO2 ratios. 5% water was used in all experiments, since water affects the amount of ammonia stored and also the activity of the catalyst. The kinetic model contains seven reaction steps including these for: ammonia adsorption and desorption, NH3 oxidation, NO oxidation, standard SCR (NO + O2 + NH3), rapid SCR (NO + NO2 + NH3), NO2 SCR (NO2 + NH3) and N2O formation. The model describes all experiments well. The kinetic parameters and 95% linearized confidence regions are given in the paper. The model was validated with six experiments not included in the kinetic parameter estimation. The ammonia concentration was varied from 200 up to 800 ppm using NO only as a NOx source in the first experiment and 50% NO and 50% NO2 in the second experiment. The model was also validated with transient experiments at 175 and 350 °C where the NO and NH3 concentrations were varied stepwise with a duration of 2 min for each step. In addition, two short transient experiments were simulated where the NO2 and NO levels as well as NO2-to-NOx ratio were varied. The model could describe all validation experiments very well.  相似文献   

16.
The global performance of coupled LNT–SCR systems, addressed to high NOx-to-N2 conversion, minimal ammonia slip and null N2O production, as well as the hydrothermal resistance of single NSR and SCR monolith catalysts and their coupling is discussed. Pt–Ba/Al2O3 and Pt–Ce–Ba/Al2O3 were washcoated on cordierite monoliths as NSR catalysts, and Cu/CHA was washcoated on similar monoliths as SCR catalysts. Both monoliths were coupled in two subsequent reactors to conform the LNT–SCR system. Previously to washcoating, the fresh powder catalysts and after severe hydrothermal aging were fully characterized by N2 adsorption–desorption isotherms at 77 K, X-ray diffraction, NH3 temperature-programmed desorption, and H2 chemisorption to relate textural and chemical characteristics with the DeNOx performance. The Cu/CHA catalyst shows an excellent hydrothermal resistance for the NH3–SCR reaction. Incorporation of ceria to the model Pt–BaO/Al2O3is beneficial for the NO-to-NOx oxidation and NO2 storage, improving NO conversion at low temperature and reducing the NH3 slip. However, addition of ceria is detrimental for the hydrothermal resistance of the NSR catalyst. However, this detrimental effect is minimized when the NSR catalyst is coupled with the Cu/CHA monolith downstream of the NSR catalyst, achieving the coupled LNT–SCR device high NO conversion and minimal NH3 slip with superior N2 selectivity for an extended temperature windows, including as low as 220 °C, and maintaining performance even after severe hydrothermal aging.  相似文献   

17.
The reaction kinetics of selective catalytic reduction (SCR) by NH3 on NO (standard SCR) and on NO + NO2 (fast SCR) over Fe/ZSM-5 were investigated using transient and steady-state analyses. In the standard SCR, the N2 production rate was transiently promoted in the absence of gaseous NH3; this enhancement can be attributed to the negative reaction order of NH3 (between −0.21 and −0.11). The steady-state data for the standard SCR could be fit to a Langmuir–Hinshelwood-type reaction between NOad and Oad to form NO2. In the fast SCR, however, the promotion behavior in the absence of gaseous NH3 was not observed and the apparent NH3 order changed from positive to negative with NH3 concentration. The steady-state rate analysis combined with elementary reaction modeling suggested that competitive adsorption between NO2 and NH3 was occurring due to strong NO2 adsorption; this must be the main reason for the absence of the promotion effect.  相似文献   

18.
This paper deals with the systematic study of Fe/HBEA zeolites for the selective catalytic reduction (SCR) of NOx by NH3 in diesel exhaust. The catalysts are prepared by incipient wetness impregnation of H-BEA zeolite (Si/Al = 12.5). The SCR examinations performed under stationary conditions show that the pattern with a Fe load of 0.25 wt.% (0.25Fe/HBEA) reveals pronounced performance. The turnover frequency at 200 °C indicates superior SCR activity of 0.25Fe/HBEA (8.5 × 10−3 s−1) as compared to commercial Fe-exchanged BEA (0.99 × 10−3 s−1) and V2O5/WO3/TiO2 (1.0 × 10−3 s−1). Based upon powder X-ray diffraction (PXRD), temperature programmed reduction by H2 (HTPR), diffuse reflectance UV–vis spectroscopy (DRUV–VIS) and catalytic data it is concluded that the pronounced performance of 0.25Fe/HBEA is substantiated by its high proportion of isolated Fe oxo sites. Furthermore, isotopic studies show that no association mechanism of NH3 takes place on 0.25Fe/HBEA, i.e. N2 is mainly formed from NO and NH3.The evaluation of 0.25Fe/HBEA under more practical conditions shows that H2O decreases the SCR performance, while CO and CO2 do not affect the activity. Contrary, SCR is markedly accelerated in presence of NO2 referring to fast SCR. Moreover, hydrothermal treatment at 550 °C does not change SCR drastically, whereas a clear decline is observed after 800 °C aging.  相似文献   

19.
The catalytic activity of soot samples for the selective catalytic reduction (SCR) of NOx with NH3 was investigated in dependence of the NO2, NO and NH3 concentration in the temperature range between 200 and 350 °C. The highest NOx reduction of up to 25 % was measured in the presence of both NO2 and NO at a GHSV of 35,000 h?1. Decreasing space velocities resulted in an increase of the SCR activity. In the absence of NO2, NOx reduction was not observed. Carbon oxidation and SCR reaction occurred in parallel due to the presence of NO2 and O2, but hardly influenced each other, which suggested that in the NOx reduction on soot most probably physisorbed species were involved. The observed stoichiometries indicated the action of the fast SCR reaction in the presence of NO and the NO 2 SCR reaction in the absence of NO, while the observed gas phase and surface species pointed at reaction steps similar to those on classical SCR catalysts.  相似文献   

20.
This study provides insight into the mechanistic and performance features of the cyclic reduction of NOx by CO in the presence and absence of excess water on a Pt–Rh/Ba/Al2O3 NOx storage and reduction catalyst. At low temperatures (150–200 °C), CO is ineffective in reducing NOx due to self-inhibition while at temperatures exceeding 200 °C, CO effectively reduces NOx to main product N2 (selectivity >70 %) and byproduct N2O. The addition of H2O at these temperatures has a significant promoting effect on NOx conversion while leading to a slight drop in the CO conversion, indicating a more efficient and selective lean reduction process. The appearance of NH3 as a product is attributed either to isocyanate (NCO) hydrolysis and/or reduction of NOx by H2 formed by the water gas shift chemistry. After the switch from the rich to lean phase, second maxima are observed in the N2O and CO2 concentrations versus time, in addition to the maxima observed during the rich phase. These and other product evolution trends provide evidence for the involvement of NCOs as important intermediates, formed during the CO reduction of NO on the precious metal components, followed by their spillover to the storage component. The reversible storage of the NCOs on the Al2O3 and BaO and their reactivity appears to be an important pathway during cyclic operation on Pt–Rh/Ba/Al2O3 catalyst. In the absence of water the NCOs are not completely reacted away during the rich phase, which leads to their reaction with NO and O2 upon switching to the subsequent lean phase, as evidenced by the evolution of N2, N2O and CO2. In contrast, negligible product evolution is observed during the lean phase in the presence of water. This is consistent with a rapid hydrolysis of NCOs to NH3, which results in a deeper regeneration of the catalyst due in part to the reaction of the NH3 with stored NOx. The data reveal more efficient utilization of CO for reducing NOx in the presence of water which further underscores the NCO mechanism. Phenomenological pathways based on the data are proposed that describes the cyclic reduction of NOx by CO under dry and wet conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号