首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinyl alcohol)/poly(ethylene glycol) hydrogels containing curcumin as a drug and the various amounts of a montmorillonite nanoclay are prepared using the freezing–thawing method. Nanoclay quantity influence on the physicomechanical properties and the drug release rate of the hydrogel as well as relationship between them is investigated. X-Ray diffraction and Atomic force microscopy analysis reveal the nanoclays have an intercalation structure in the hydrogel, and the hydrogel crystallization decreases with increasing the nanoclay inclusion. From the SEM micrographs observation, it was revealed that due to the presence of the nanoclay in the hydrogel, its porosity decreased. The naonoclay has an amount-depended dual effect on the hydrogel swelling. The swelling mechanism is a normal Fickian diffusion for all the hydrogel samples. Strong physical interactions between the nanoclays and the polymer chains in the nanocomposite hydrogels are evidenced by the rheological studies. These interactions lead to significant reinforcement of the hydrogel tensile strength, intensified by the nanoclay amount. Interestingly, the nanoclays show the capability of accelerating and, also, decelerating the drug release of the hydrogel. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47843.  相似文献   

2.
Hydrogels are a promising candidate for applications in biomedicine and bioengineering, but their mechanical properties often restrict their applications. To improve the mechanical performance of poly(vinyl alcohol) (PVA) hydrogels, we introduced sodium carboxymethylcellulose (CMC), and graphene oxide (GO) into them. We prepared a series of composite hydrogels composed of PVA, CMC, and GO with epichlorohydrin as a chemical crosslinker. We used Fourier transform infrared spectroscopy and X-ray diffraction to characterize the chemical structures of GO and the hydrogel. The dynamic mechanical analysis results show the synergistic enhancement effects of CMC and GO on the PVA hydrogel. The swelling process of the hydrogels also fit well with the second-order kinetic equation. Scanning electron microscopy results suggest that the neat mesh structure facilitated superior mechanical properties in the hydrogels. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47644.  相似文献   

3.
Polyvinyl alcohol (PVA) hydrogel is a promising material possessing good chemical stability, high water absorption, excellent biocompatibility and biological aging resistant. However, the poor mechanical performance of PVA hydrogel limits its applications. Here we report the utilization of one-dimensional (1D) BN nanofibers (BNNFs) as nanofillers into PVA matrix to prepare a novel kind of BNNFs/PVA composite hydrogel via a cyclic freezing and thawing method. For comparison, the composite hydrogels using spherical BN nanoparticles i.e. BN nanospheres (BNNSs) as fillers were also prepared. The mechanical properties, thermal stabilities and swelling behaviors of the composite hydrogels were investigated in detail. Our study indicates that the mechanical properties of the hydrogels can be improved by adding of BNNFs. After loading of BNNFs into PVA with content of 0.5?wt%, the compressive strength of the composite hydrogel increases by 252% compared with that of pure PVA hydrogel. The tensile performance of BNNFs/PVA composite hydrogels has also been improved. Impressive 87.8% increases in tensile strengths can be obtained with 1?wt% BNNFs added. In addition, with the increase of BNNFs content, the thermal stability and the swelling ratio of hydrogels are increased gradually. The swelling ratio of hydrogel increases by 56.3% with only 1?wt% BNNFs added. In comparison, the improvement effects of the BNNS fillers on the mechanical strengths and swelling ratios are much weaker. The enhanced effects of BNNFs can be ascribed to the strong hydrogen bond interaction between BNNFs and PVA. The high aspect ratios of the nanofibers should also be took into account.  相似文献   

4.
We report preparation and characterization of nanoclay from Indian bentonite and imported nanoclays, and their compounding with polypropylene (PP) and maleic anhydride‐grafted PP (MA‐g‐PP) in twin screw extruder. The compounded polymer/nanoclay nanocomposites (PNCs) are molded into a standard specimen for studying its tensile, flexural and impact strength. A wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) study demonstrates intercalation of PP in nanoclays rather than exfoliation for both, indigenous and imported nanoclays. The tensile modulus increased by 41 and 39% for PNC1 (PNC with imported nanoclay) and PNC2 (PNC with indigenous nanoclay) with respect to PP. The flexural modulus for PNC1 and PNC2 also increases by 23 and 22% due to incorporation of 5% nanoclay in PP along with 5% MA‐g‐PP. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
Films of chitosan/polyvinyl alcohol (PVA)/sepiolite nanocomposite were prepared by a simple and “green” route through solution mixing; followed by freezing–thawing cycles. The structures of nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis, X-ray diffractometry, and Fourier transform infrared spectroscopy. The SEM and TEM micrographs confirmed a needle-type dispersion of sepiolite nanoclay in the hydrogel nanocomposites. The effects of sepiolite and chitosan/PVA weight ratio on the swelling of nanocomposites were investigated. The water absorbency of nanocomposites was decreased by introducing sepiolite nanoclay. The nanocomposites with high content of chitosan showed high swelling capacity. The nanocomposite films showed pH-dependent swelling behavior with a maximum water absorbency under acidic pH. The cefazolin with a broad-spectrum activity toward gram-positive and gram-negative bacteria was loaded in hydrogels. The release of cefazolin from nanocomposites was evaluated at pH 7.4. The content of released drug was affected by both sepiolite amount and chitosan/PVA weight ratio. The nanocomposites films released more cefazolin than the neat hydrogel film. Cefazolin-loaded nanocomposites showed the antibacterial activity with a large zone of inhibition against gram-positive Bacillus cereus bacterium.  相似文献   

6.
Poly(vinyl alcohol) (PVA) hydrogels with tissue-like viscoelasticity, excellent biocompatibility, and hydrophilicity have been considered as promising cartilage replacement materials. However, the low mechanical properties of pure PVA hydrogels limit their applications for bearing complicated loads. Herein, we report silicon dioxide (SiO2)/PVA composite hydrogels fabricated by fabricated cyclically freezing/thawing the aqueous mixture of PVA and methyltrimethoxysilane (MTMS). MTMS hydrolyzes and forms SiO2 particles in situ to reinforce PVA hydrogel. Meanwhile, silanol group condenses with hydroxyl groups of PVA and chemically bonds with PVA. The resulting SiO2/PVA hydrogels exhibit much better mechanical properties than bare PVA hydrogel. In addition, the composite hydrogels keep very low swellable property. This prepared composite hydrogels are promising in a variety of biomedical applications such as artificial articular cartilage, drug delivery, and biosensors. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46895.  相似文献   

7.
PVA/Fe2O3磁敏感性水凝胶的制备及性能   总被引:2,自引:0,他引:2  
采用循环冷冻-解冻方法制备了聚乙烯醇(PVA)/Fe2O3磁敏感性水凝胶. 考察了水凝胶的力学性能、溶胀性能和磁敏感性,并用扫描电镜观察了其表面形貌. 结果表明,当Fe2O3含量为1%(w)时,水凝胶的力学性能最好;水凝胶的溶胀度和脱水率随时间增加有相似的变化趋势,都随磁性粒子含量升高而降低;溶胀性能降低其交联程度增加;PVA和Fe2O3相容性较好;水凝胶在3000 Oe的磁场强度下达到饱和,呈现出很强的顺磁性,磁滞损耗较多,表明具有较好的磁敏感性.  相似文献   

8.
《Polymer Composites》2017,38(6):1086-1102
This article presents a review of studies on materials, preparation, properties, and characterization of polyvinyl alcohol (PVA) nanocomposite hydrogels. The structure and properties of Montmorillonite, the nanoclay used in the manufacture of PVA nanocomposites and techniques for making PVA nanocomposite hydrogels have been reviewed. The characterization techniques such as Fourier transform infrared spectroscopy (FT‐IR), Differential scanning calorimetry (DSC), Dynamic mechanical analysis (DMA), Scanning electron microscopy, Transmission electron microscopy (TEM), X‐ray diffraction (XRD) are also studied. The XRD patterns and TEM images have proven the intercalated and exfoliated structures of PVA nanocomposite hydrogels that is due to the presence of nanoclay layers. Investigation of FT‐IR spectra shows the bonding formation between OH and silanol groups of PVA and Montmorillonite. Also, the results of DSC and DMA indicated a decrease in crystallinity and the glass transition temperature of PVA by the incorporation of nanoclay, while the loss modulus is increased compared to that of pure PVA. POLYM. COMPOS., 38:1086–1102, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
A freeze‐thawing process was employed to produce both rose bengal (RB)/polyvinyl alcohol (PVA) and benzophenone (BP)/PVA hydrogels, respectively. Results indicated that only RB incorporated PVA (RB/PVA) could form hydrogel after undergoing three cycles of freeze‐thawing process; One of the cycles should be conducted by freezing at ?15°C ± 3°C for 18 h followed by thawing at 25°C for 6 h. The structural features and functional properties of the RB/PVA hydrogel were investigated by FTIR, XRD, SEM evaluations, and photo‐induced antimicrobial functions were examined as well. Release of RB from the RB/PVA hydrogel was examined by UV‐Vis spectroscopy. The freeze‐thawed RB/PVA hydrogel showed antimicrobial abilities against both E. coli and S. aureus under the exposure to fluorescence light as well as UVA (365 nm) light. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A dual network hydrogel made up of polyvinylalcohol (PVA) crosslinked by borax and polyvinylpyrrolidone (PVP) was prepared by means of freezing-thawing circles. Here PVP was incorporated by linking with PVA to form a network structure, while the introduction of borax played the role of crosslinking PVA chains to accelerate the formation of a dual network structure in PVA/PVP composite hydrogel, thus endowing the hydrogel with high mechanical properties. The effects of both PVP and borax on the hydrogels were evaluated by comparing the two systems of PVA/PVP/borax and PVA/borax hydrogels. In the former system, adding 4.0% PVP not only increased the water content and the storage modulus but also enhanced the mechanical strength of the final hydrogel. But an overdose of PVP just as more than 4.0% tended to undermine the structure of hydrogels, and thus deteriorated hydrogels’ properties because of the weakened secondary interaction between PVP and PVA. Likewise, increasing borax could promote the gel crosslinking degree, thus making gels show a decrease in water content and swelling ratio, meanwhile shrinking the pores inside the hydrogels and finally enhancing the mechanical strength of hydrogels prominently. The developed hydrogel with high performances holds great potential for applications in biomedical and industrial fields.  相似文献   

11.
A novel physicochemical crosslinked nanocomposite hydrogel based on polyvinyl alcohol (PVA) and natural Na‐montmorillonite (Na+‐MMT) was synthesized by chemical crosslinking of nanocomposite hydrogel followed by a freezing‐thawing process. The effects of physical crosslinking, as well as physicochemical crosslinking, on the structure, morphology, and properties (thermal, mechanical, swelling, and deswelling) of nanocomposite hydrogels were investigated and compared with each other. The structure and morphology of nanocomposites were studied by Fourier transform infrared, X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy techniques. The thermal and mechanical properties of nanocomposites that were affected by physical and physicochemical crosslinking were evaluated by thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, hardness test, and Water vapor transmission rate (WVTR) experiments. The results showed that the physicochemical crosslinking of a PVA nanocomposite leads to a reduction in crystallinity and melting temperature, as well as an increase in the Hardness and WVTR compared to a physically crosslinked PVA nanocomposite hydrogel. The swelling and deswelling experiments were performed using a gravimetric method, and it was shown that controlled crosslinking of PVA nanocomposite hydrogel with glutaraldehyde causes the swelling ratio to increase and the cumulative amount of water loss to decrease. The swelling (sorption) and deswelling (desorption) kinetics data for physically and physicochemical crosslinking of nanocomposite hydrogels were fitted with a fickian model. It is concluded that through control crosslinking of PVA nanocomposite can lead to a hydrogel with higher swelling capacity than that is in conventional PVA nanocomposite hydrogel. POLYM. COMPOS., 37:897–906, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
聚乙烯醇/膨润土杂化水凝胶的力学性能和溶胀行为   总被引:2,自引:1,他引:1  
利用冷冻-解冻法制备了聚乙烯醇/膨润土杂化水凝胶. X射线衍射结果表明,膨润土以剥离形式分布在水凝胶基体中. 研究结果表明,与纯PVA5水凝胶相比,经过5个冷冻-解冻循环制备的含2%(w)膨润土的杂化水凝胶的拉伸模量、拉伸强度和断裂伸长率分别增加了44.0%, 74.2%和25.2%,而溶胀行为与5个循环的纯水凝胶相近. 含0.5%(w)膨润土的杂化水凝胶的拉伸模量和拉伸强度高于基体水凝胶,其在溶胀400 min时的溶胀度高于所有的样品.  相似文献   

13.
Vulnerability of hydrogels against thermal circumstances may be substantially eliminated via incorporating nanoclay to prepare nanocomposite hydrogels. In this research, chitosan‐intercalated montmorillonite (ChitoMMT) was used as a bionanoclay to yield novel nanocomposite hydrogels based on 2‐acrylamido‐2‐methylpropanesulfonic acid. The bionanoclay is suitable especially for preparing biomaterials used in biomedical, food, and pharmaceutical applications, unlike conventional commercial nanoclays (alkyl ammonium‐intercalated MMT) which are not appropriate for bio‐applications due to toxicity of the intercalant particularly where the clay content is high. Two different crosslinkers (i.e., methylene bisacrylamide, and polyethyleneglycol dimethacrylate) were employed to synthesize the nanocomposites. The variations in swelling, rheological and thermal properties of the hydrogels were essentially attributed to thermally induced crosslink cleavage/formation depending upon the crosslinker nature. The nanocomposites comprised superior thermal properties in comparison with the clay‐free hydrogel counterpart. They can preserve substantially their swelling ability for longer heating periods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
首先以蒽甲醛和聚乙烯醇(PVA)为原料、二甲基亚砜(DMSO)为溶剂、对甲苯磺酸(TsOH)为催化剂,反应得到蒽接枝改性聚乙烯醇(AnPVA)。然后利用混合溶剂凝胶法制备AnPVA水凝胶。通过差示扫描量热法(DSC)、拉伸等测试,研究水凝胶的力学等性能。结果表明,相比于纯PVA水凝胶,AnPVA水凝胶的力学性能得到了显著提高,在水凝胶中引入疏水基团是一种十分有效提高水凝胶力学性能的手段。AnPVA水凝胶浸泡于水中加热后无明显溶胀,有着优异的耐热和耐水性能,并且该水凝胶是物理交联网络,有着良好的循环重塑性能。  相似文献   

15.
pH and temperature responsive nanocomposite hydrogels were synthesized with sodium alginate (NaAlg), N‐isopropylacrylamide (NIPA), and nanoclay. The structure, morphology, thermal behavior, and swelling and deswelling behaviors of the hydrogels were studied. The NaAlgm/PNIPA/Clayn hydrogels revealed a highly porous structure in which the pore sizes decreased and the amount of pores increased with increasing the nanoclay content in the hydrogels. PNIPA retained its own characteristics regardless of the amount of NaAlg and nanoclay. The effect of pH and nanoclay content on the swelling and effect of temperature on the deswelling behavior were investigated. The equilibrium swelling ratios of the nanocomposite hydrogels increased with increasing the pH from 2 to 6. The maximum swelling was attained at pH 6. Deswelling increased with increasing the nanoclay content in the hydrogels. The hydrogels were found to be pH and temperature responsive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43222.  相似文献   

16.
The aim of this study was to investigate the effect of nanoclay addition on the morphological and mechanical properties of PA6/SAN/SEBS ternary blend. Two different nanoclays with different modifiers and two different mixing sequences were used to investigate the role of thermodynamic and kinetic, respectively, in the nanoclays localization. XRD, SEM, TEM, melt rheology, tensile and Izod impact tests were used to characterize the nanocomposites. Results of characterization of nanocomposites showed that clay localization is a very influential parameter to determine the type of morphology and, consequently, mechanical properties of ternary/clay nanocomposites. It was demonstrated that presence of nanoclay in the matrix results in the increase of stiffness, while localization of nanoclay at the interface improves the toughness and tensile strength. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41969.  相似文献   

17.
《Polymer Composites》2017,38(6):1135-1143
A series of nanocomposite hydrogels were prepared by a freeze‐thaw process, using polyvinyl alcohol (PVA) as polymer matrix and 0–10 wt% of hydrophilic natural Na‐montmorillonite (Na+‐MMT), free from any modification, as composite aggregates. The effect of nanoclay content and the sonication process on the nanocomposite microstructure and morphology as well as its properties (physical, mechanical, and thermal) were investigated. The microstructure and morphology were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X‐ray diffraction technique. The thermal stability and mechanical properties of nanocomposite hydrogels were examined using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis; moreover hardness and water vapor transmission rate measurements. It was concluded that the microstructure, morphology, physical (thermal) and mechanical properties of nanocomposite hydrogels have been modified followed by addition of nanoclay aggregates. The results showed that Na+‐MMT may act as a co‐crosslinker. Based on the results obtained, the nanocomposite hydrogel PVA/Na+‐MMT synthesized by a freeze‐thaw process, appeared to be a good candidate for biomedical applications. POLYM. COMPOS., 38:1135–1143, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Poly(vinyl alcohol) (PVA) hydrogels were prepared in the presence/absence of Laponite RD (LRD) by using glutaraldehyde (GL) as chemical crosslinker. The effect of GL concentration (CHO/OH ratio between 0.02 and 0.38) and of clay addition on the PVA hydrogel properties was investigated. The swollen hydrogels showed good transparency and flexibility. LRD incorporation into the PVA hydrogel, revealed by Fourier transform infrared spectroscopy, led to a significant increase of the roughness of the dried hydrogel surface (about two times), as established by atomic force microscopy. The swelling ability was affected in a small extent by the clay addition. The elastic modulus decreased from 4680 to 3340 Pa and from 2195 to 1603 Pa by addition of 0.5% LRD into PVA hydrogels obtained with CHO/OH ratio of 0.02 and 0.06, respectively. The LRD addition reduced the gelation time determined by in situ rheological monitoring of PVA crosslinking reaction. The experimental investigations showed that there is an optimum CHO/OH ratio of 0.02 for which the PVA/LRD hybrid hydrogel presents the properties required by a targeted application, as for example support material for wound dressings. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46661.  相似文献   

19.
Conductive hydrogel composed of microcrystalline cellulose (MCC) and polypyrrole (PPy) was prepared in ionic liquid; and the resulting hydrogel was characterized with FT-IR, SEM, XRD and TGA. By doping with TsONa, the MCC/PPy composite hydrogels showed relatively high electrical conductivity, up to 7.83 × 103 S/cm, measured using a four-probe method. The swelling kinetics of the composite hydrogels indicated that the swelling process was mainly influenced by the cellulose content; and the equilibrium swelling ratio decreased as the increasing of MCC content in the hydrogels. In addition, the MCC/PPy composite hydrogels exhibited significantly enhanced mechanical property in contrast to MCC hydrogel.  相似文献   

20.
Polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) hydrogel has been prepared by using γ-irradiation technique. In the present study the conclusion on miscibility of PVA/PVP blends, confirmed qualitatively and quantitatively by using Fourier transform infrared spectroscopy and differential scanning calorimetry, respectively. PVA and PVP are found to form a thermodynamically miscible pair. The physical properties such as gel fraction and water absorption performance of the prepared hydrogels were measured, it was found that the gel fraction increases with increasing irradiation dose while the swelling of PVA/PVP blended hydrogels nearly tends to increase with increasing PVP content and reduced with enhanced irradiation doses. The hydrogel pore structure of various PVA/PVP compositions were tested with SEM. Ability of PVA/PVP hydrogels to absorb and release antimicrobial compounds was tested using amoxicillin as an antibacterial and ketoconazole as an antifungal. Antimicrobial activity of PVA/PVP hydrogels was examined using four bacteria, and four fungi. No antibacterial or antifungal activities of non-loaded PVA/PVP of various compositions were detected while the loading ones found to have antimicrobial activity. Results showed resistance of Pseudomonas aeruginosa and Candida albicans to PVA/PVP, while Bacillus subtilis was very sensitive. Biodegradation of PVA/PVP hydrogels was investigated by burial method in two types of local soils (clay and sandy soils). The highest degradation rate was found to be achieved using clay soil. Also, effect of irradiation dose on its biodegradability was tested. The results showed that the radiation prepared PVA/PVP hydrogels can be use as biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号