首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polydopamine (PDA) layers and particles self‐polymerized by dopamine have ultraviolet (UV) absorbing property besides versatility and adhesive ability. Herein, a facile strategy for preparing poly(vinylidene fluoride) (PVDF) membrane coated with a thick PDA layer was developed to decrease UV transmittance through the surface modification of PVDF membrane. The PVDF membrane was modified by PDA deposition after pretreated with KOH/alcohol and KMnO4/KOH solution. Furthermore, we investigated the effect of coating conditions such as concentration of dopamine and Tris–HCl buffer solution, coating time, and temperature on the performance of membranes. The characterization results indicated that it is more conductive for PDA deposition on the surface PVDF‐OH films than original PVDF films. Most importantly, UV transmittance of PVDF‐OH film modified in dopamine solution under optimum condition for one time can decrease to as low as 0.122% at 320 nm, which showed excellent UV‐shielding property. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45746.  相似文献   

2.
制备了表面包覆聚多巴胺层的二氧化钛(TiO2@PDA)复合粒子,并采用溶液刮涂法制备了聚偏氟乙烯(PVDF)/TiO2和PVDF/TiO2@PDA复合膜。利用傅立叶变换红外光谱仪、X射线光电子能谱仪、透射电子显微镜表征了复合粒子的结构,利用紫外–可见光分光光度计、对比率仪表征了复合膜的紫外–可见光阻隔性。结果表明, PVDF/TiO2复合膜对紫外光具有优异的阻隔性,但对可见光的阻隔性(即不透明度)随TiO2含量增加而先增加后不变,PVDF/TiO2@PDA复合膜的不透明度则随TiO2@PDA含量的增加而单调增大。当薄膜厚度为20μm,TiO2体积分数为10%时,PVDF/TiO2复合膜对比率(CR)值为92.8%,小于完全不透明临界值98%,而PVDF/TiO2@PDA (多巴胺处理20 min)复合膜CR值为98.39%。一定TiO2浓度下,随着多巴胺处理TiO2时间的增大,复合膜达到完全不透明所需的薄膜厚度逐渐减小。  相似文献   

3.
采用多巴胺(DA)和3?氨基丙基?三甲氧基硅烷(APTMS)对碳纳米管(CNTs)进行DA辅助共修饰,并用溶剂浇铸法制备具有优异热性能和力学性能的聚偏氟乙烯(PVDF)复合薄膜;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差示扫描量热仪(DSC)、X射线光电子能谱仪(XPS)、热常数分析仪和电子单纱强力仪等对材料的微观形貌、结晶度、导热性能和力学性能进行了表征。结果表明,经DA和APTMS共修饰后的PDA?CNTs?NH2具有良好的分散性能;PDA?CNTs?NH2的加入,有利于改善PVDF复合薄膜的热稳定性;与纯PVDF薄膜和PVDF/CNTs复合薄膜相比,PVDF/PDA?CNTs?NH2复合薄膜的导热性能和力学性能显著增强,在8 %(质量分数,下同) PDA?CNTs?NH2的填料负载下,其热导率达到0.337 9 W/(m·K),是纯PVDF薄膜的1.78倍,其拉伸强度为52.67 MPa,是纯PVDF复合薄膜的1.36倍。  相似文献   

4.
A reverse atom transfer radical polymerization (RATRP) with benzoyl peroxide (BPO)/CuCl/2,2-bipyridine (Bpy) was applied onto grafting of poly(methyl methacrylate) (PMMA) and poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) from poly(vinylidene fluoride) (PVDF) microfiltration (MF) membrane surfaces, including the pore surfaces. The introduction of peroxide and hydroperoxide groups onto the PVDF membranes was achieved by ultraviolet (UV) irradiation in nitrogen, followed by air exposure. RATRP from UV pretreated hydrophobic PVDF membranes was then performed for attaching well-defined homopolymer. The chemical composition of the modified PVDF membrane surfaces was characterized by attenuated total reflectance (ATR) FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The surface and cross-section morphology of membranes were studied by scanning electron microscopy (SEM). The pore sizes of the pristine PVDF and the PMMA grafted PVDF membranes were measured using micro-image analysis and process software. With increase of graft concentration, the pore size of the modified membranes decreased and became uniform. Kinetic studies of homogeneous (in toluene solution) system revealed a linear increase in molecular weight with the reaction time and narrow molecular weight distribution, indicating that the chain growth from the membrane surface was a “controlled” or “living” grafting process. The introduction of the well-defined PMMA on the PVDF membrane gave rise to hydrophilicity. Protein adsorption and protein solution permeation experiments revealed that the UV pretreated hydrophobic PVDF membrane subjected to surface-initiated RATRP of methyl methacrylate (MMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) exhibited good antifouling property.  相似文献   

5.
紫外接枝丙烯酸对PVDF膜表面改性的研究   总被引:1,自引:0,他引:1  
以二苯甲酮为光引发剂,通过紫外辐照将亲水性单体丙烯酸接枝于聚偏氟乙烯(PVDF)膜的表面。考察了光引发剂浓度和辐照时间对接枝率的影响,并利用衰减全反射光谱和扫描电子显微镜对接枝后PVDF膜表面的化学组成和微观形貌进行了表征。结果表明:随着光引发剂浓度的增大,丙烯酸的接枝率先增大后减小。通过纯水接触角和吸水率研究了接枝后的PVDF膜的亲水性,发现接枝后的PVDF膜的亲水性得到明显改善。  相似文献   

6.
《Ceramics International》2023,49(12):20437-20446
In this study, Antimony-doped tin oxide (ATO) fixed and loaded on one-dimensional halloysite nanotubes (HNTs) were fabricated using the co-precipitation method to improve photocatalytic efficiency and dispersion of ATO. After that well dispersed ATO@HNTs nanofiller (AH) modified by monoethanolamine (mAH) was also embedded in the polyvinylidene fluoride (PVDF) coating by solution blend to further broaden the application fields. The results showed the introduction of HNTs accelerates electron transfer and promotes the decomposition of rhodamine B (Rh B). More significantly, with the effect of the well-dispersed mAH nanofillers, PVDF coating containing 15% mAH degraded more than 90% of Rh B under ultraviolet (UV) irradiation for 2 h, which was 1.2 times higher than that of PVDF coating. In addition, the PVDF/mAH-15% coating exhibits excellent antistatic stability under the harsh conditions of photoaging and thermal aging. Moreover, by comparing temperature differences, the thermal insulation performance of PVDF/mAH-15 coating with 70.24% visible light transmittance is significantly improved by reducing heat conduction and radiation at the same time.  相似文献   

7.
In this research, the surface of poly (vinylidene fluoride) (PVDF)/sulfonated polyethersulfone (SPES) blend membrane prepared via immersion precipitation was modified by depositing of TiO2 nano-particles followed by UV irradiation to activate their photocatalytic property. The membranes were characterized by FTIR, SEM, AFM, contact angle, dead end filtration (pure water flux and BSA solution flux), antifouling analysis and antibacterial activity. The FTIR spectrum confirmed the presence of OH functional groups on the PVDF/SPES membrane structure, which was the key factor for deposition, and self-assembly of TiO2 nanoparticles on the membrane surface. The SEM and AFM images indicated that the TiO2 nanoparticles were deposited on the PVDF/SPES membrane. The contact angle measurements showed that the hydrophilicity of PVDF/SPES membrane was strongly improved by TiO2 deposition and UV irradiation. The filtration results indicated that the initial flux of TiO2 deposited PVDF/SPES membranes was lower than the initial flux of neat PVDF/SPES membrane. However, the former membranes showed lower flux decline compared to the neat PVDF/SPES membrane. The BSA rejection of modified membranes was improved. The fouling analysis demonstrated that the TiO2 deposited PVDF/SPES membranes showed the fewer tendencies to fouling. The results of antibacterial study showed that the UV irradiated TiO2 deposited PVDF/SPES membranes possess high antibacterial property.  相似文献   

8.
通过对支撑材料进行表面改性处理和浸入凝胶法制备了界面增强型聚偏氟乙烯/聚对苯二甲酸乙二醇酯(PVDF/PET)超滤膜。用电导率在线测量法确定了硅烷偶联剂 3-氨丙基三乙氧基硅烷(KH550)水解液的制备条件,考察了改性处理条件对PVDF/PET膜的界面性能和力学性能的影响。通过180°剥离试验测试PVDF膜与支撑层间的剥离强度,用扫描电镜观察PET无纺布及PVDF膜破坏底面的微观形貌,用傅里叶红外光谱仪表征PET表面化学组成。结果表明,水解液中KH550用量较少时(≤3%),处理时间延长,PVDF/PET间的剥离强度增大,水解液中KH550用量较多时(>3%),处理时间延长,PVDF/PET间的剥离强度先增大后减小;PVDF/PET膜的拉伸强度随水解液中KH550用量的增加或处理时间的延长先增大后略减小。改性前后PVDF/PET膜的分离与透过性能对比表明,PET表面改性后,PVDF膜的牛血清白蛋白(BSA)截留率几乎不受影响,水通量略增。  相似文献   

9.
The surface of glycerol plasticized thermoplastic starch (TPS) sheets was modified by photocrosslinking under ultra violet (UV) irradiation. Sodium benzoate was selected as photosensitizer and induced onto sheet surface layer by soaking the sample sheets in photosensitizer aqueous solution. The effects of concentration of the photosensitizer aqueous solution, soaking time and moisture content in sheets before UV irradiation on the photocrosslinking were investigated. Water contact angle, moisture absorption, and mechanical properties were measured to characterize the influence of the surface photocrosslinking modification on the properties of TPS sheets. The obtained results showed that the surface photocrosslinking treatments markedly reduced the water sensitivity of TPS sheets and enhanced their tensile strength and Young's modulus but decreased the elongation at break. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The flat sheet PVDF-fabric composite membrane used for membrane distillation was prepared by coating and wet phase inversion process. The composite membrane consisted of a PVDF porous membrane layer and a fabric layer. The thin polyester filament woven fabric with water-and-oil repellent finish was used as the support of composite membrane. The effects of fabric texture, PVDF concentration in casting solution and functional finishing of fabric on the preparation and properties of the composite membrane were investigated. The experimental results showed that fabric texture, PVDF concentration and functional finishing of fabric had great influence on the preparation and properties of the composite membrane. When the PVDF concentration in casting solution was 10-12% and the support fabric, with 435 warps/10 cm and 273 wefts/10 cm and the area weight of 79 g/m2, was finished with 2 g/L water-and-oil repellent agent FK-501, the prepared composite membrane exhibited better performance in tensile strength, peeling strength and water vapor permeability, with mean pore size of 0.63 μm and overall porosity of 57.6%.  相似文献   

11.
PVDF microfiltration membranes were modified by γ-ray irradiation induced grafting polymerization of 4-vinyl pyridine (4-VP) and then quaternization by n-butyl chloride. The effects of grafting method (simultaneous irradiation, pre-irradiation/UV), grafting conditions (absorbed dose, UV irradiation time, and 4-VP concentration) and quaternization conditions (temperature, time, and concentration of n-butyl chloride) were investigated. It was found that, the grafting degree initially increases with the absorbed dose and then reaches a plateau. The optimal concentration of 4-VP is around 15 wt.%. The ion exchange capacity increases with quaternization temperature, time, and concentration of n-butyl chloride. After modification, the pores size, permeation flux, as well as elongation at break, of quaternized membrane decreases, while the retention coefficient, tensile strength and Young’s modulus increase apparently. Upon contacting with the membranes, the Escherichia coli concentration decreases gradually. It is the adsorption mechanism for the pristine membranes whereas contact-killing mechanism for the quaternized membranes. Simultaneous irradiation is more effective than pre-irradiation/UV in the improvement of antibacterial property of membranes.  相似文献   

12.
To improve the interaction between cells and scaffolds, the appropriate surface chemical property is very important for tissue engineering scaffolds. In this work, the dopamine (DA) was first introduced into thermoplastic polyurethane (TPU) matrix to obtain TPU/DA nanofibers by electrospinning. Subsequently, the TPU@polydopamine (PDA) composite nanofibers with core/shell structure were fabricated by in situ polymerization of PDA. In comparison with TPU nanofibers, the uniformization of PDA coating layer on the surface of TPU/DA composite nanofibers significantly increased due to the addition of DA, which used as the active sites to guide the PDA particles accumulated along with the fiber direction. The hydrophilicity and water uptake ability of TPU@PDA composite nanofibers were larger than those of TPU nanofibers. The TPU@PDA composite nanofibers possess excellent comprehensive mechanical properties of high strength, stiffness, elasticity, and recoverability because of the hydrogen bonding occurrence between PDA and DA, as well as between PDA and TPU matrix. The attachment and viability of mouse embryonic osteoblasts cells (MC3T3-E1) cultured on TPU@PDA composite nanofibers were obviously enhanced compared with TPU nanofibers. Those results suggested that the modified TPU@PDA composite nanofibers have superior mechanical and biological properties, which promoting them potentially useful for tissue engineering scaffolds.  相似文献   

13.
为了提高PVDF膜的亲水性和力学强度,利用硅烷偶联剂乙烯基三甲氧基硅烷和碱液分别对Al2O3粒子和聚偏氟乙烯(PVDF)进行了改性,并以改性后产物为制模材料,以过氧化苯甲酰(BPO)为引发剂,将改性纳米Al2O3粒子引入到PVDF中,通过热致相变法制备了双改性Al2O3/PVDF杂化膜。随后,考察了硅烷偶联剂对Al2O3粒子粒径及不同碱浓度和碱处理时间对PVDF结构的影响,并对制备的双改性膜做了性能测试。结果表明,当添加的硅烷偶联剂的质量分数为33%时,Al2O3粒子的粒径降为43.47 nm,在此基础上,当添加的改性Al2O3粒子的质量分数为5%时,杂化膜的截留率为83.1%,通量为621.5 L/m2.h,膜的拉伸强度达到5.01Mpa,改性纳米Al2O3粒子的引入,是杂化膜通量和力学强度提高的主要原因。  相似文献   

14.
A novel photo-catalysis polyvinylidene fluoride ultrafiltration membrane was successfully fabricated via phase inversion method. The membrane matrix was supplemented with nano-ZnO of different content for membrane modification. Filtration experiments, contact angle measurements, scanning electron microscope/energy dispersive X-ray spectrometer analysis, and mechanical tests were conducted to characterize the modified membranes. The photo-catalysis tests clearly showed that the modified PVDF membranes had significant photo-catalysis self-cleaning capability. PVDF-1 (adding 1.0% nano-ZnO with PVDF) membranes achieved 94.8% water flux recovery after exposure to low-pressure 10 W UV-C mercury lamp irradiation for 30 min, whereas the raw membrane only reached 63.3% recovery. The implantation of nano-ZnO on the inner surface of the membrane (i.e., the pore wall) may have been responsible for the enhancement of the photo-catalysis self-cleaning property. The pure water flux of the PVDF-1.5 (adding 1.5% nano-ZnO with PVDF) membrane was nearly five times as great as that of pure PVDF. Supplementation of nano-ZnO could improve the mechanical properties of the membrane, but excessive supplementation of nano-ZnO could cause a decline in the membrane mechanical properties.  相似文献   

15.
由静电纺丝技术制备的EVOH–SO_3Li纳米纤维薄膜的力学性能不高,为了改善薄膜的力学性能,采用多巴胺对EVOH–SO_3Li纳米纤维膜进行改性。通过宏观形貌观察、扫描电子显微镜、傅立叶变换红外光谱分析这三种测试方法相结合,表明多巴胺粘附在纳米纤维上,并在纤维膜上进行自聚形成聚多巴胺(PDA)。热失重分析结果表明,热失重为10%时PDA改性后的隔膜较未改性的EVOH–SO_3Li纯膜提高了67℃。拉伸性能测试结果表明,浸泡浓度为0.015 mol/L时,PDA改性后的隔膜拉伸强度比纯膜提高了11.89 MPa。PDA改性后薄膜的孔隙率有所下降但吸液率提升明显,最高达到了480%。  相似文献   

16.
In this work, polyaniline (PAni), poly-n-ethylaniline, poly-n-methylaniline and poly-o-anisidine were prepared by chemical polymerization. 1,3 (6 or 7)-napthalenetrisulfonic acid was used for the first time in the literature as a dopant to increase the solubility of the polymers in methanol solution. The structure and properties of these conducting polymers were characterized by FTIR, UV–Vis, elemental analysis and conductivity measurements. Poly(vinylidene fluoride) (PVDF) membranes were modified by PAni and its derivatives and used as cation-exchange membranes. Poly-n-ethylaniline, poly-n-methylaniline and poly-o-anisidine were also used for the first time for this purpose in the literature. Ion-exchange capacity, water uptake and fixed group concentration of the polymer modified PVDF membranes were investigated. The changes in the surface morphologies of non-modified and polymer modified PVDF membrane was investigated by AFM and SEM. The polymer modified membranes were used for the removal of calcium (II) and magnesium (II) ions from water samples with Donnan dialysis (DD) experiments. The modified membranes show excellent stability during 120 days.  相似文献   

17.
The stability of PVDF hollow fibre membranes in sodium hydroxide (NaOH) aqueous solutions were investigated in this study. PVDF hollow fibre membranes were prepared from each of the three commercial raw PVDF materials (Kynar 761, Solef 1015 and Solef 6010) from two major suppliers (Atofina Chemicals Inc., USA and Solvay, Belgium) for comparison purposes. The effect of NaOH concentration, treatment time and temperature on mechanical properties, thermal properties and crystalline structure of the PVDF hollow fibre membranes were investigated through mechanical strength measurement, surface area analysis, XRD, FTIR and DSC analyses. The obtained results indicate that the reaction between PVDF and NaOH was initiated even at low concentrations of NaOH and was aggravated with the extended treatment time, resulting in the decrease in mechanical strength and crystallinity of PVDF hollow fibre membranes. The reaction was accelerated and intensified by increasing the concentration of NaOH and/or treatment temperature. At 70 °C, the mechanical integrity of the PVDF membranes was completely destroyed in 4 wt% NaOH solution within 24 h or in 10 wt% NaOH solution within 8 h. The deterioration of stability in NaOH solutions is considered universal for all PVDF employed in this study, irrespective of the raw materials or the corresponding hollow fibre membranes.  相似文献   

18.
《分离科学与技术》2012,47(9):1209-1215
A poly(vinylidene fluoride) (PVDF) hollow fiber membrane surface was modified by alkaline treatment in this study. This subject was selected with the aim to confirm the mechanisms of alkaline degradation of PVDF membranes, characterize the variations of membrane surface morphology (e.g., average pore size, pore size distribution, porosity, etc.), and estimate the membrane fouling potential by a bench-scale test with synthetic surface water. The conditions of the alkaline treatment covered various concentrations, temperature, and processing time. The results of this study indicate that the hydrophilic PVDF membranes can be obtained after appropriate treatment without loss of integrity of the membrane surface. All factors, including the concentration of NaOH, temperature, and processing time affect membrane properties. The surface images and air flow rate of unmodified and modified membranes showed difference in their average pore size and pore size distribution. In general, the increase of the processing time decreases the average pore size at constant concentration and temperature; the increase of the NaOH concentration in solution and temperature fastens the degradation process. Membrane pure water flux decreased after alkaline treatment. This can be attributed to the decrease of pore size. However, the membrane anti-fouling potential increased after alkaline treatment due to the enhancement of hydrophilic property of membrane surface.  相似文献   

19.
The polyvinylidene fluoride (PVDF)/polyvinyl alcohol (PVA) polymer solutions were coated on the outer surface of PVDF matrix hollow fiber membrane. On the principle of the homogeneous‐reinforced (HR) membrane technology, the reinforced PVDF/PVA (RFA) hollow fiber membranes prepared through the dry‐wet spinning method. The performance of the RFA membranes varies with the PVA concentration in the polymer solution and is characterized in terms of pure water flux (PWF), porosity, a mechanical strength test, and morphology observations by a scanning electron microscopy (SEM). The results of this study indicate that PVA can apparently improve the hydrophilicity of the PVDF hollow fiber membranes. The growing enrichment of the hydrophilic components PVA on the membrane surface is determined by X‐ray photoelectron spectroscopy. The RFA membranes have a favorable interfacial bonding between the coating layer (PVDF/PVA) and the matrix membrane (PVDF hollow fiber membrane), as shown by SEM. The elongation at break of the RFA membranes increases much more than that of the matrix membrane that is endowed with the better flexibility of the membrane performance. PWF decreases much more compared with that of the matrix membrane. The RFA membranes have a lower flux decline degree during the process of protein solution and ink solution filtration compared with that of the matrix membrane. POLYM. ENG. SCI., 54:276–287, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
Surface modified fibrillar silicate (FS) was prepared by dopamine oxide polymerization and self‐assembly of poly(dopamine) (PDA) on the FS surface, presynthesized silver nanoparticles subsequently adhered to the PDA functionalized FS (FS‐PDA) surface by simply dipping FS‐PDA in silver nanoparticles solution, owing to the metal‐binding ability of catechol and nitrogen‐containing groups on the PDA coating on the surface of FS. The chemical composition of the modified FS surface was determined by X‐ray photoelectron spectroscopy. Surface morphological changes of the FS nanofibers were observed by transmission electron microscopy. The results indicated that the in situ spontaneous oxidative polymerization of dopamine on the FS surface and the immobilization of Ag nanoparticles on the surface of FS were successful. The FS‐PDA/Ag demonstrated a significant enhancement in antibacterial properties compared to the pristine FS by using Escherichia coli as model strain. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39859.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号