首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sidjabat  O.  Trimm  D.L. 《Topics in Catalysis》2000,11(1-4):279-282
The advantages of using magnesia prepared using two techniques as a support for nickel catalysts for the steam reforming of light hydrocarbons has been examined. The initial specific activities of nickel supported on alumina or magnesia were similar, but deactivation as a result of coke formation was significantly greater on alumina-supported nickel. The steam reforming of ethane and propane over nickel/magnesia catalysts was much less affected by coke formation over longer times-on-line. The effects of variation in the preparation of magnesia were small, differences only appearing in rates of coking of higher hydrocarbons. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A series of silica-supported Pt, Ru, and Pt–Ru catalysts has been synthesized using dendrimer–metal nanocomposite (DMN) precursors prepared by both co- and sequential complexation with metal salts. The catalysts have been characterized by several techniques, including electron microscopy, temperature-programmed titration of adsorbed oxygen, and X-ray diffraction. Liquid-phase selective hydrogenation of 3,4-epoxy-1-butene (EpB) was used as a probe reaction to evaluate their catalytic performance. The bimetallic catalyst prepared by the co-complexation method exhibits a superior catalytic activity compared to the sequential one, and is much more active than a conventional catalyst prepared by incipient wetness. The activity enhancement is attributed to a bifunctional performance of the PtRu alloy sites created, based on a strong correlation between turnover frequencies, and both the alloy compositions and metal surface site distributions. In addition, the co-complexation catalyst is selective toward crotonaldehyde, suggesting that this reaction pathway is favored on the PtRu sites.  相似文献   

3.
Methanol electrooxidation was investigated on Pt–Ru electrocatalysts supported on glassy carbon. The catalysts were prepared by electrodeposition from solutions containing chloroplatinic acid and ruthenium chloride. Bulk composition analysis of the Pt–Ru catalyst was performed using an X-ray detector for energy dispersive spectroscopy analysis (EDX). Three different compositions were analyzed in the range 0–20 at.% Ru content. Tafel plots for the oxidation of methanol in solutions containing 0.1–2 M CH3OH, and in the temperature range 23–50 °C showed a reasonably well-defined linear region. The slope of the Tafel plots was found to depend on the ruthenium composition. The lower slope was determined for the Pt catalyst, varying between 100 and 120 mV dec−1. The values calculated for the alloys were higher, ranging from 120 to 140 mV dec−1. The reaction order for methanol varies from 0.5 to 0.8, increasing with the ruthenium content. The activation energy calculated from Arrhenius plots was found to change with the catalyst composition, showing a lower value around 30 kJ mol−1 for the alloys, and a higher value, of 58.8 kJ mol−1, for platinum. The effect of ruthenium content is explained by the bifunctional reaction mechanism.  相似文献   

4.
The catalytic activity of various supported Ir–Re catalysts was investigated for the liquid phase reforming reaction of methanol. Although Ir/SiO2 exhibited poor activity for the hydrogen production but the addition of Re enhanced the activity more than one order of magnitude, and reached to the comparable value of Pt–Ru/SiO2. The TOF of H2 formation over Ir–Re/SiO2 catalysts increased with the increase of Re/Ir ratio, accompanied with the increase of the particle sizes of Ir–Re composites. From the investigation of support effect, it was disclosed that CeO2 and ZrO2 enhanced catalytic activity of Ir–Re catalysts significantly.  相似文献   

5.
6.
Pt, Pt–Sn and Pt–W supported on γ‐Al2O3 were prepared and characterized by H2 chemisorption, TEM, TPR, test reactions of n‐C8 reforming (500°C), cyclohexane dehydrogenation (315°C) and n‐C5 isomerization (500°C), and TPO of the used catalysts. Pt is completely reduced to Pt0, but only a small fraction of Sn and of W oxides are reduced to metal. The second element decreases the metallic properties of Pt (H2 chemisorption and dehydrogenation activity) but increases dehydrocyclization and stability. In spite of the large decrease in dehydrogenation activity of Pt in the bimetallics, the metallic function is not the controlling function of the bifunctional mechanisms of dehydrocyclization. Pt–Sn/Al2O3 is the best catalyst with the highest acid to metallic functions ratio (due to its lower metallic activity) presenting a xylenes distribution different from the other catalysts. The acid function of Pt–Sn/Al2O3 is tuned in order to increase isomerization and cyclization and to decrease cracking, as compared to Pt and Pt–W. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The bimetallic Pt–Au catalysts supported on ZnO/Al2O3 with different Pt/Au molar ratios were prepared by impregnation (IMP) method using a mixed solution of Pt and Au precursor. These were characterized by X-ray diffraction (XRD), CO chemisorption, temperature programmed reduction (TPR), and transmission electron microscopy (TEM) equipped energy dispersive spectroscopy (EDS). Catalytic activity for complete oxidation of toluene was measured using a flow reactor under atmospheric pressure. In the results, the aggregation of Au particles depended on the molar ratio in the bimetallic Pt–Au catalyst, and Pt particles was well dispersed homogeneously even by the IMP method. The Pt75Au25 and Pt67Au33 catalysts concurrently coated with Pt and Au precursors by IMP method showed higher activity than monometallic Pt and Au catalyst for toluene oxidation. Also, in order of the catalytic activity for toluene was very good agreement compare with the TPR results. The Au particles might promote the toluene oxidation over the bimetallic catalyst concurrently coated with Pt and Au particles. Therefore, the size of Pt and Au particles and catalytic activity were confirmed to be correlated to molar ratio of Pt and Au loaded.  相似文献   

8.
Bimetallic Pt–Pd/SiO2–Al2O3 catalysts exhibited much higher activities in aromatic hydrogenation of distillates than monometallic Pt/SiO2–Al2O3 and Pd/SiO2–Al2O3 catalysts. The studies of extended X‐ray absorption fine structure (EXAFS) indicated that there was an interaction between Pt and Pd in the Pt–Pd/ SiO2–Al2O3 catalyst. Furthermore, from the EXAFS, it was assumed that the active metal particle on the Pt–Pd/SiO2–Al2O3 catalysts is composed of the “Pd dispersed on Pt particle” structure. Regarding both the activities of aromatic hydrogenation and the EXAFS results, it was concluded that the Pd species dispersed on Pt particles were responsible for the high activity of the bimetallic Pt–Pd/SiO2–Al2O3 catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Carbon-supported Pt–Ru–WOx/C catalysts for application in PEMFC anodes were synthesized by a modified Bönnemann method. Their electrocatalytic activity for the oxidation of H2/CO mixtures and CH3OH was measured by E/i-curves in PEM single cell arrangements under working conditions. Information about composition, microstructure and nanomorphology was obtained by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence analysis (XFA) and transmission electron microscopy (TEM). X-ray diffraction data at room temperature show only one single Pt f.c.c. phase; no evidence of Ru, W and their oxides, respectively, is found. Hence, the presence of W and Ru as amorphous oxide species seems likely. Surface-sensitive XPS measurements detect Pt0, platinum oxide and hydroxide species, metallic Ru, ruthenium oxide, hydrous ruthenium oxide and WO3. For the crystalline platinum phase particle sizes of less than 2 nm were determined by TEM images and XRD patterns via solving the Scherrer equation. Temperature-dependent XRD measurements were performed to show the influence of ageing on the catalyst structure.  相似文献   

10.
《Catalysis communications》2002,3(12):565-571
Reforming of ethanol in excess of water (1–8 molar ratio) has been investigated on Rh/CeO2, Rh/ZrO2 and Rh/CeO2–ZrO2 (Ce/Zr=4, 2 and 1). Catalysts characterization was conducted by X-ray diffraction, BET surface area measurements, CO2 adsorption, and temperature programmed reduction (TPR). At 400–500 °C all catalysts showed high activity and selectivity towards hydrogen production (between 5 and 5.7 mol of H2 per mol of ethanol inlet) despite the considerable textural differences of the oxides (fluorite, monoclinic and tetragonal). The large variations of Rh dispersion (as monitored by TPR) between all catalysts had a small effect on H2 production. Although it appears that the reaction is not sensitive to either the oxide or the metal structure Rh/CeO2 (the most basic catalyst investigated) was the least reactive.  相似文献   

11.
High energy ball milling, an industrially amenable technique, has been used to produce CO tolerant unsupported Pt–Ru based catalysts for the oxidation of hydrogen in polymer electrolyte fuel cells. Nanocrystalline Pt0.5–Ru0.5 alloys are easily obtained by ball-milling but their performances as anode catalysts are poor because nanocrystals composing the material aggregate during milling into larger particles. The result is a low specific area material. Improved specific areas were obtained by milling together Pt, Ru and a metal leacheable after the milling step. The best results were obtained by milling Pt, Ru, and Al in a 1:1:8 atomic ratio. After leaching Al, this catalyst (Pt0.5–Ru0.5 (Al4)) displays a specific area of 38 m2g–1. Pt0.5–Ru0.5 (Al4) is a composite catalyst. It consists of two components: (i) small crystallites (4 nm) of a Pt–Al solid solution (1–3 Al wt%) of low Ru content, and (ii) larger Ru crystallites. It shows hydrogen oxidation performance and CO tolerance equivalent to those of Pt0.5–Ru0.5 Black from Johnson Matthey, the commercial catalyst which was found to be the most CO tolerant one in this study.  相似文献   

12.
Aiming at enhancing H2 production in water gas shift (WGS) for fuel cell application, a small amount of oxygen was added to WGS reaction toward oxygen-enhanced water gas shift (OWGS) on ceria-supported bimetallic Pd–Cu and Pt–Cu catalysts. Both CO conversion and H2 yield were found to increase by the oxygen addition. The remarkable enhancement of H2 production by O2 addition in short contact time was attributed to the enhanced shift reaction, rather than the oxidation of CO on catalyst surface. The strong dependence of H2 production rate on CO concentration in OWGS kinetic study suggested O2 lowers the CO surface coverage. It was proposed that O2 breaks down the domain structure of chemisorbed CO into smaller domains to increase the chance for coreactant (H2O) to participate in the reaction and the heat of exothermic surface reaction helping to enhance WGS kinetics. Pt–Cu and Pd–Cu bimetallic catalysts were found to be superior to monometallic catalysts for both CO conversion and H2 production for OWGS at 300 °C or lower, while the superiority of bimetallic catalysts was not as pronounced in WGS. These catalytic properties were correlated with the structure of the bimetallic catalysts. EXAFS spectra indicated that Cu forms alloys with Pt and with Pd. TPR demonstrated the strong interaction between the two metals causing the reduction temperature of Cu to decrease upon Pd or Pt addition. The transient pulse desorption rate of CO2 from Pd–Cu supported on CeO2 is faster than that of Pd, suggesting the presence of Cu in Pd–Cu facilitate CO2 desorption from Pd catalyst. The oxygen storage capacity (OSC) of CeO2 in the bimetallic catalysts indicates that Cu is much less pyrophoric in the bimetallic catalysts due to lower O2 uptake compared to monometallic Cu. These significant changes in structure and electronic properties of the bimetallic catalysts are the result of highly dispersed Pt or Pd in the Cu nanoparticles.  相似文献   

13.
A kinetic study was performed over thermally aged and steam-aged Pt and Pt–Pd catalysts to investigate the effect of temperature, and methane and water concentrations on the performance of catalysts in the range of interest for environmental applications. It was found that both catalysts permanently lose a large portion of their initial activity as result of exposure to 5 vol.% water in the reactor feed. Empirical power-law and LHHW type of rate equations were proposed for methane combustion over Pt and Pt–Pd catalysts respectively. Optimization was used to determine the parameters of the proposed rate equations using the experimental results. The overall reaction orders of one and zero in methane and water concentration was found for stabilized steam-aged Pt catalyst in the presence and absence of water. The apparent self-inhibition effect caused by methane over Pt–Pd catalyst in the absence of water was associated with the inhibiting effect of water produced during the combustion of methane. A significant reversible inhibition effect was also observed over steam-aged Pt–Pd catalyst when 5 vol.% water vapor was added to the reactor feed stream. A significant reduction in both activity and activation energy was observed above temperatures of approximately 550 °C for steam-aged Pt–Pd catalyst in the presence of water (the activation energy dropped from a value of 72.6 kJ/mol to 35.7 kJ/mol when temperature exceeded 550 °C).  相似文献   

14.
The effect of the Ni(II)–Mg(II)–Al(III) layered double hydroxide (LDH) activation conditions over the surface and bulk composition and the catalytic performance in ethanol steam reforming (ESR) is studied. Ternary oxides were prepared by thermal decomposition of LDHs synthesized using the homogeneous precipitation method with urea. Catalyst precursor is submitted to two different activation treatments: calcinations at 400, 500, 600 and 700 °C with subsequent reduction at 720 °C, or direct reduction at 720 °C. The samples were characterized by sorptometry, H2 chemisorption, ICP chemical analysis, thermogravimetric analysis, X-ray diffraction, X-ray photoelectronic spectroscopy and temperature programming reduction. The catalysts obtained by calcination at 600 °C and then reduction at 720 °C and those directly reduced at 720 °C showed the better performance in ESR. The precursor submitted to a proper thermal treatment develops, through a decoration-demixing process, a Ni(II)-poor spinel-type shell onto NiO domains.  相似文献   

15.
Bimetallic Cu–Co/SiO2 catalysts with different metal loading (5:5, 15:15, 35:35 – Cu:Co) were prepared by deposition–precipitation method and evaluated by using the cyclohexanol dehydrogenation. XRD results show that only the 15%Cu–15%Co/SiO2 oxide precursor exhibits mainly a phase containing Cu and Co with spinel-like structure, while other bimetallic precursors present CuO and Co3O4 as distinct phases. The Rietveld method was used to quantify the different phases on the precursors and to determinate how much Cu there was in the spinel form and as CuO. After reduction and passivation, the 15%Cu–15%Co/SiO2 catalyst showed a Cu–Co alloy formation and a different H2 chemisorption capacity. The H2 uptake was 2.5 greater than 35%Cu–35%Co/SiO2 catalyst and the same order of magnitude for the monometallic 35%Co/SiO2. Catalytic results showed that the 15%Cu–15%Co/SiO2 catalyst presented the highest stability and selectivity to cyclohexanone, with the lowest phenol production.  相似文献   

16.
Ruthenium–platinum binary oxides [(Ru + Pt)Ox] were coated on titanium substrates by thermal decomposition. The surface morphologies and elemental analyses of these electrodes were examined by means of scanning electron microscopy. The electrochemical behaviour was characterized by cyclic voltammetry (CV) and linear scanning voltammetry (LSV). The effects of electrolyte conditions on the current efficiency (CE) of hypochlorite production on binary (Ru + Pt)Ox electrodes and the treatment of a high salt-containing dye wastewater using this hypochlorite were also investigated. The highest CE for hypochlorite production occurred on the RP1 (20 mol% Pt in precursor) electrode. The major factors influencing CE for hypochlorite production were the electrolyte flow rate, current density and chloride ion (C1) concentration. The RP1 electrode exhibited the best removal of organics and chromophoric groups in the dye wastewater. On this electrode, better removal of organics and chromophoric groups was obtained at 300 mA cm–2. The colour of black–red dye wastewater became light yellow when a charge of 13.2 A h was passed while the COD of the wastewater decreased from 10 500 to 1250 mg L–1.  相似文献   

17.
A kinetic model of reforming is developed that describes the chemical transformations of С6–С8 pseudocomponents over Pt catalyst. The composition of platformate is predicted in light of the activity of the metal and acid sites, and temperature profile in the reactors. Equations of mass and heat balance are used in the calculations. The rate constants and activation energies of individual reactions are determined for catalyst of the R-134 series. The stationary activity values (a s = 0.8) are calculated along with the constants of the deactivation of acid (0.0056 ± 0.0004 min?1) and metal (0.079 ± 0.003 min?1) sites at Т = 490°C. The relative error of platformate composition modeling for benzene, toluene, and xylenes does not exceed 5%. It is shown that the stability of platformate composition is due to a stepwise temperature increase in the reactors during the periods between regenerations. It is proposed that the developed model be used to select temperature regimes for the operation of aromatic-producing industrial complexes in order to obtain platformate of desired compositions.  相似文献   

18.
The steam reforming of methanol was studied over a series of copper–manganese spinel oxide catalysts prepared with the urea–nitrate combustion method. All catalysts showed high activity towards H2 production with high selectivity. Synthesis parameters affected catalyst properties and, among the catalysts tested, the one prepared with 75% excess of urea and an atomic ratio Cu/(Cu + Mn) = 0.30 showed the highest activity. The results show that formation of the spinel CuxMn3  xO4 phase in the oxidized catalysts is responsible for the high activity. Cu–Mn catalysts were found to be superior to CuO–CeO2 catalysts prepared with the same technique.  相似文献   

19.
Silica-supported NiFe2O4 spinel was prepared by sol–gel method using tetramethyl orthosilicate as a precursor of silica. B.E.T., XRD, MEB–EDS, TEM, XPS and Raman scattering techniques were used for its characterization. The reducibility by hydrogen was investigated by TPR and HT-XRD. These properties are compared to those of unsupported NiFe2O4. Both acidic and redox sites were found by studying the decomposition of isopropanol. First experiments in the dry reforming of methane by CO2 showed that owing to more acidic properties supporting NiFe2O4 on silica provides a more active and selective catalyst that seems less prone to coking.  相似文献   

20.
The influence of the crystalline structure of ZrO2 on the metallic properties of Pt, when supported on WO3–ZrO2, was studied. Pt supported on tetragonal zirconia loses its metallic properties while when supported on monoclinic zirconia it presents good metallic activities. WO2,2- deposited on amorphous Zr(OH)4 before calcination generates an active material for n‐butane isomerization. The larger the fraction of the tetragonal phase of zirconia in this material, the higher the isomerization activity and the lower the metallic activity of Pt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号