首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in the NOx storage-reduction (NSR) behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3 have been identified and traced to their different chemical and structural properties. The results show that Pt/Ba/CeO2 exhibits inferior NOx storage and, particularly, reduction (regeneration) activity compared to the Al2O3 supported catalyst. The incomplete reduction of the stored NOx-species in Pt/Ba/CeO2 seems to be caused by a faster and more profound reoxidation of Pt particles during the lean period as evidenced by in situ X-ray absorption spectroscopy. Interestingly, the reduction activity could be significantly improved by a pre-reduction step at mild conditions. Exposure of the Pt/Ba/CeO2 catalyst to reducing H2 atmosphere in the temperature range 300–500 °C lead to a moderate increase of Pt particle size which beneficially influenced the regeneration activity. In contrast, pre-reduction at temperatures above 500 °C was unfavorable and resulted in a severe decrease of the regeneration activity, probably due to migration of the partially reduced CeO2 onto the surface of Pt particles.  相似文献   

2.
A series of 1 wt.%Pt/xBa/Support (Support = Al2O3, SiO2, Al2O3-5.5 wt.%SiO2 and Ce0.7Zr0.3O2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NOx trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO2-TPD. At high temperature (400 °C) in the absence of CO2 and H2O, the NOx storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO2 decreased catalyst performances. The inhibiting effect of CO2 on the NOx uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NOx storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO2 and H2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO2 was responsible for the loss of NOx storage capacity at 400 °C. Finally, under realistic conditions (H2O and CO2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NOx uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO2 competition for the storage sites.  相似文献   

3.
In this paper, the effect of CO2 and H2O on NOx storage and reduction over a Pt–Ba/γ-Al2O3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO2 and H2O, NOx is stored on BaCO3 sites only. Moreover, H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N2 as well as complete regeneration of stored NO. In the presence of CO2, NO is oxidized into NO2 and more NOx is stored as in the presence of H2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NOx trapping in the presence of CO2·NH3 formation is seen in the rich phase and the selectivity towards N2 is 83%. Ba(NO3)2 is always completely regenerated during the subsequent rich phase. In the absence of CO2 and H2O, both surface and bulk barium sites are active in NOx storage. As lean/rich cycling proceeds, the selectivity towards N2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NOx storage.  相似文献   

4.
The NOx storage-reduction catalysis under oxidizing conditions in the presence of SO2 has been investigated on Pt/Ba/Fe/Al2O3, Pt/Ba/Co/Al2O3, Pt/Ba/Ni/Al2O3, and Pt/Ba/Cu/Al2O3 catalysts compared with Pt/Ba/Al2O3, Pt/Fe/Al2O3, Pt/Co/Al2O3, Pt/Ni/Al2O3, Pt/Cu/Al2O3 and Pt/Al2O3 catalysts. The NOx purification activity of Pt/Ba/Fe/Al2O3 catalyst was the highest of all the catalysts investigated in this paper after an aging treatment. That of the aged Pt/Ba/Co/Al2O3 and Pt/Ba/Ni/Al2O3 catalysts was essentially the same as that of the aged Pt/Ba/Al2O3 catalyst, while that of the aged Pt/Ba/Cu/Al2O3 and Pt/Cu/Al2O3 catalysts was substantially lower than the others.

The Fe-compound on the aged Pt/Ba/Fe/Al2O3 catalyst has played a role in decreasing the sulfur content on the catalyst after exposure to simulated reducing gas compared with the Pt/Ba/Al2O3 catalyst without the Fe-compound. XRD and EDX show that the Fe-compound inhibits the growth in the size of BaSO4 particles formed on the Pt/Ba/Fe/Al2O3 catalyst under oxidizing conditions in the presence of SO2 and promotes the decomposition of BaSO4 and desorption of the sulfur compound under reducing conditions.  相似文献   


5.
Performance of NOx traps after high-temperature treatments in different redox environments was studied. Two types of treatments were considered: aging and pretreatment. Lean and rich agings were examined for a model NOx trap, Pt–Ba/Al2O3. These were done at 950 °C for 3 h, in air and in 1% H2/N2, respectively. Lean aging had a severe impact on NOx trap performance, including HC and CO oxidation, and NH3 and N2O formation. Rich aging had minimal impact on performance, compared to fresh/degreened performance. Deactivation from lean aging was essentially irreversible due to Pt sintering, but Pt remained dispersed with the rich aging. Pretreatments were examined for a commercially feasible fully formulated NOx trap and two model NOx traps, Pt–Ba/Al2O3 and Pt–Ba–Ce/Al2O3. Pretreatments were done at 600 °C for 10 min, and used feed gas that simulated diesel exhaust under several conditions. Lean pretreatment severely suppressed NOx, HC, CO, NH3 and N2O activities for the ceria-containing NOx traps, but had no impact on Pt–Ba/Al2O3. Subsequently, a relatively mild rich pretreatment reversed this deactivation, which appears to be due to a form of Pt–ceria interaction, an effect that is well known from early work on three-way catalysts. Practical applications of results of this work are discussed with respect to NOx traps for light-duty diesel vehicles.  相似文献   

6.
A multi-component NOx-trap catalyst consisting of Pt and K supported on γ-Al2O3 was studied at 250 °C to determine the roles of the individual catalyst components, to identify the adsorbing species during the lean capture cycle, and to assess the effects of H2O and CO2 on NOx storage. The Al2O3 support was shown to have NOx trapping capability with and without Pt present (at 250 °C Pt/Al2O3 adsorbs 2.3 μmols NOx/m2). NOx is primarily trapped on Al2O3 in the form of nitrates with monodentate, chelating and bridged forms apparent in Diffuse Reflectance mid-Infrared Fourier Transform Spectroscopy (DRIFTS) analysis. The addition of K to the catalyst increases the adsorption capacity to 6.2 μmols NOx/m2, and the primary storage form on K is a free nitrate ion. Quantitative DRIFTS analysis shows that 12% of the nitrates on a Pt/K/Al2O3 catalyst are coordinated on the Al2O3 support at saturation.

When 5% CO2 was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by 45% after 1 h on stream due to the competition of adsorbed free nitrates with carboxylates for adsorption sites. When 5% H2O was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by only 16% after 1 h, but the Al2O3-based nitrates decreased by 92%. Interestingly, with both 5% CO2 and 5% H2O in the feed, the total storage only decreased by 11%, as the hydroxyl groups generated on Al2O3 destabilized the K–CO2 bond; specifically, H2O mitigates the NOx storage capacity losses associated with carboxylate competition.  相似文献   


7.
A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NOx storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NOx storage model on BaO/Al2O3. This model was not sufficient to describe the NOx storage experiments for the Pt/BaO/Al2O3, because the NOx desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.  相似文献   

8.
The release and reduction of NOx in a NOx storage-reduction (NSR) catalyst were studied with a transient reaction analysis in the millisecond range, which was made possible by the combination of pulsed injection of gases and time resolved time-of-flight mass spectrometry. After an O2 pulse and a subsequent NO pulse were injected into a pellet of the Pt/Ba/Al2O3 catalyst, the time profiles of several gas products, NO, N2, NH3 and H2O, were obtained as a result of the release and reduction of NOx caused by H2 injection. Comparing the time profiles in another analysis, which were obtained using a model catalyst consisting of a flat 5 nmPt/Ba(NO3)2/cordierite plate, the release and reduction of NOx on Pt/Ba/Al2O3 catalyst that stored NOx took the following two steps; in the first step NO molecules were released from Ba and in the second step the released NO was reduced into N2 by H2 pulse injection. When this H2 pulse was injected in a large amount, NO was reduced to NH3 instead of N2.

A only small amount of H2O was detected because of the strong affinity for alumina support. We can analyze the NOx regeneration process to separate two steps of the NOx release and reduction by a detailed analysis of the time profiles using a two-step reaction model. From the result of the analysis, it is found that the rate constant for NOx release increased as temperature increase.  相似文献   


9.
The deactivation by sulfur and regeneration of a model Pt/Ba/Al2O3 NOx trap catalyst is studied by hydrogen temperature programmed reduction (TPR), X-ray diffraction (XRD), and NOx storage capacity measurements. The TPR profile of the sulfated catalyst in lean conditions at 400 °C reveals three main peaks corresponding to aluminum sulfates (550 °C), “surface” barium sulfates (650 °C) and “bulk” barium sulfates (750 °C). Platinum plays a role in the reduction of the two former types of sulfates while the reduction of “bulk” barium sulfates is not influenced by the metallic phase. The thermal treatment of the sulfated catalyst in oxidizing conditions until 800 °C leads to a stabilization of sulfates which become less reducible. Stable barium sulfides are formed during the regeneration under hydrogen at 800 °C. However, the presence of carbon dioxide and water in the rich mixture allows eliminating more or less sulfides and sulfates, depending on the temperature and time. The regeneration in the former mixture at 650 °C leads to the total recovery of the NOx storage capacity even if “bulk” barium sulfates are still present on the catalyst.  相似文献   

10.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle.  相似文献   

11.
The reduction of NOx by hydrogen under lean burn conditions over Pt/Al2O3 is strongly poisoned by carbon monoxide. This is due to the strong adsorption and subsequent high coverage of CO, which significantly increases the temperature required to initiate the reaction. Even relatively small concentrations of CO dramatically reduce the maximum NOx conversions achievable. In contrast, the presence of CO has a pronounced promoting influence in the case of Pd/Al2O3. In this case, although pure H2 and pure CO are ineffective for NOx reduction under lean burn conditions, H2/CO mixtures are very effective. With a realistic (1:3) H2:CO ratio, typical of actual exhaust gas, Pd/Al2O3 is significantly more active than Pt/Al2O3, delivering 45% NOx conversion at 160 °C, compared to >15% for Pt/Al2O3 under identical conditions. The nature of the support is also critically important, with Pd/Al2O3 being much more active than Pd/SiO2. Possible mechanisms for the improved performance of Pd/Al2O3 in the presence of H2+CO are discussed.  相似文献   

12.
A new NOx storage-reduction electrochemical catalyst has been prepared from a polycrystalline Pt film deposited on 8 mol% Y2O3-stabilized ZrO2 (YSZ) solid electrolyte. BaO has been added onto the Pt film by impregnation method. The NOx storage capacity of Pt-BaO/YSZ system was investigated at 350 °C and 400 °C under lean conditions. Results have shown that the electrochemical catalyst was effective for NOx storage. When nitric oxides are fully stored, the catalyst potential is high and reaches its maximum. On the other hand, when a part of NO and also NO2 desorb to the gas phase, the catalyst potential remarkably drops and finally stabilizes when no more NOx storage occurs but only the reaction of NO oxidation into NO2. Furthermore, the investigation has clearly demonstrated that the catalyst potential variation versus temperature or chemical composition is an effective indicator for in situ following the NOx storage-reduction process, i.e. the storage as well as the regeneration phase. The catalyst potential variations during NOx storage process was explained in terms of oxygen coverage modifications on the Pt.  相似文献   

13.
The NOx storage and reduction functions of a Pt–Ba/Al2O3 “NOx storage–reduction” catalyst has been investigated in the present work by applying the transient response and the temperature programmed reaction methods, by using propylene as the reducing agent. It is found that: (i) the storage of NOx occurs first at BaO and then at BaCO3, which are the most abundant sites following regeneration of catalyst with propylene; (ii) the overall storage process at BaCO3 is slower than at BaO; (iii) CO2 inhibits the NOx storage at low temperatures; (iv) the amount of NOx stored up to catalyst saturation at 350 °C corresponds to 17.6% of Ba; (v) the reduction of stored NOx groups is fast and is limited by the concentration of propylene in the investigated T range (250–400 °C); (vi) selectivity to N2 is almost complete at 400 °C but is significantly lower at 300 °C due to the formation of NO which can be tentatively ascribed to the presence of unselective Pt–O species.  相似文献   

14.
Novel NOx storage-reduction (NOxSR) catalysts prepared by Pt and/or Cu impregnation of Mg–Al (60:40) hydrotalcite (HT)-type compounds show better performances in NOx storage than Pt–Ba/Al2O3 Toyota-type NOxSR catalysts at reaction temperatures lower than 250 °C. The presence of Pt or Cu considerably enhances the activity, with the former more active. The nature of the HT source, however, also influences performance. The co-presence of Pt and Cu slightly worsens the low temperature activity, but considerably promotes the resistance to deactivation after severe hydrothermal treatment and in the presence of SO2. This effect is attributed to both the possibility of formation of a Pt–Cu alloy after reduction, and the modification of the HT induced during the deposition of Cu. The overall Pt–Cu/HT performances are thus superior to those of the Pt–Ba/Al2O3 Toyota-type NOxSR catalysts.  相似文献   

15.
The effect of different reducing agents (H2, CO, C3H6 and C3H8) on the reduction of stored NOx over PM/BaO/Al2O3 catalysts (PM = Pt, Pd or Rh) at 350, 250 and 150 °C was studied by the use of both NO2-TPD and transient reactor experiments. With the aim of comparing the different reducing agents and precious metals, constant molar reduction capacity was used during the reduction period for samples with the same molar amount of precious metal. The results reveal that H2 and CO have a relatively high NOx reduction efficiency compared to C3H6 and especially C3H8 that does not show any NOx reduction ability except at 350 °C over Pd/BaO/Al2O3. The type of precious metals affects the NOx storage-reduction properties, where the Pd/BaO/Al2O3 catalyst shows both a high storage and a high reduction ability. The Rh/BaO/Al2O3 catalyst shows a high reduction ability but a relatively low NOx storage capacity.  相似文献   

16.
This paper deals with the activity of bimetallic potassium–copper and potassium–cobalt catalysts supported on alumina for the reduction of NOx with soot from simulated diesel engine exhaust. The effect of the reaction temperature, the soot/catalyst mass ratio and the presence of C3H6 has been studied. In addition, the behavior of two monometallic catalysts supported on zeolite beta (Co/beta and Cu/beta), previously used for NOx reduction with C3H6, as well as a highly active HC-SCR catalyst (Pt/beta) has been tested for comparison. The preliminary results obtained in the absence of C3H6 indicate that, at temperatures between 250 and 400 °C, the use of bimetallic potassium catalysts notably increases the rate of NOx reduction with soot evolving N2 and CO2 as main reaction products. At higher temperatures, the catalysts mainly favor the direct soot combustion with oxygen. In the presence of C3H6, an increase in the activity for NOx reduction has been observed for the catalyst with the highest metal content. At 450 °C, the copper-based catalysts (Cu/beta and KCu2/Al2O3) show the highest activity for both NOx reduction (to N2 and CO2) and soot consumption. The Pt/beta catalyst does not combine, at any temperature, a high NOx reduction with a high soot consumption rate.  相似文献   

17.
Catalytic performance of Sn/Al2O3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NOx by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al2O3 (SG) catalyst, and the maximum NO2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NOx desorption accompanied with O2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H2O and SO2 at low temperature, and the temperature window was also broadened in the presence of H2O and SO2, however the NOx desorption and NO conversion decreased sharply on the 300 ppm SO2 treated catalyst, the catalytic activity was inhibited by the presence of SO2 due to formation of sulfate species (SO42−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al2O3 (SG) was not decreased in the presence of large oxygen.  相似文献   

18.
The NOx storage behavior of a series of Pt-Ba/Al2O3 catalysts, prepared by wet impregnation of Pt/Al2O3 with Ba(Ac)2, has been investigated. The catalysts with Ba loadings in the range 4.5–28 wt.% were calcined at 500 °C in air and subsequently exposed to NO pulses in 5 vol.% O2/He atmosphere. Catalysts were characterized by means of thermogravimetry (TG) combined with mass spectroscopy (MS) and XRD before and after exposure to NO pulses. Characterization of the calcined catalysts corroborated the existence of three Ba-containing phases which are discernible based on their different thermal stability: BaO, LT-BaCO3 and HT-BaCO3. Characterization after NOx exposure showed that the different Ba-containing phases present in the catalysts possess different reactivity for barium nitrate formation, depending on their interfacial contact. The different Ba(NO3)2 species produced upon NOx exposure could be distinguished based on their thermal stability. The study revealed that during the NOx storage process a new thermally instable BaCO3 phase formed by reaction of evolved CO2 with active BaO. The fraction of Ba-containing species that were active in NOx storage depended on the Ba loading, showing a maximum at a Ba loading of about 17 wt.%. Lower and higher Ba loading resulted in a significant loss of the overall efficiency of the Ba-containing species in the storage process. The loss in efficiency observed at higher loading is attributed to the lower reactivity of the HT-BaCO3, which becomes dominant at higher loading, and the increased mass transfer resistance.  相似文献   

19.
The reduction of NO under cyclic “lean”/“rich” conditions was examined over two model 1 wt.% Pt/20 wt.% BaO/Al2O3 and 1 wt.% Pd/20 wt.% BaO/Al2O3 NOx storage reduction (NSR) catalysts. At temperatures between 250 and 350 °C, the Pd/BaO/Al2O3 catalyst exhibits higher overall NOx reduction activity. Limited amounts of N2O were formed over both catalysts. Identical cyclic studies conducted with non-BaO-containing 1 wt.% Pt/Al2O3 and Pd/Al2O3 catalysts demonstrate that under these conditions Pd exhibits a higher activity for the oxidation of both propylene and NO. Furthermore, in situ FTIR studies conducted under identical conditions suggest the formation of higher amounts of surface nitrite species on Pd/BaO/Al2O3. The IR results indicate that this species is substantially more active towards reaction with propylene. Moreover, its formation and reduction appear to represent the main pathway for the storage and reduction of NO under the conditions examined. Consequently, the higher activity of Pd can be attributed to its higher oxidation activity, leading both to a higher storage capacity (i.e., higher concentration of surface nitrites under “lean” conditions) and a higher reduction activity (i.e., higher concentration of partially oxidized active propylene species under “rich” conditions). The performance of Pt and Pd is nearly identical at temperatures above 375 °C.  相似文献   

20.
This paper shows the behavior of a Pt/Ba/γ–Al2O3 automotive catalyst in a fixed bed reactor during cyclic operation at lean and rich gas phase conditions at short (seconds) and long (hours) cycling times at different temperatures. Reactor exit gas phase concentrations have been measured and catalyst properties have been determined before and after selective cycling experiments. The experimental results indicate that: (i) Upon 9 h lean and 15 h rich cycling, the NO oxidation efficiency of the catalyst decreases with time while incomplete regeneration is seen, even after 15 h rich exposure with H2. The cyclic steady state is reached after 3 lean/rich cycles, at which only 60% of the available barium is involved in the NOx storage/reduction. (ii) The BET surface area, pore volume, and Pt dispersion decrease by approximately 40%, which may be a result of masking of Pt sites or blocking of pores of the barium clusters as BaCO3 becomes Ba(NO3)2. Experiments with catalyst pellet sizes of 180 and 280 μm along with XPS measurements show that blocking of catalyst pellet pores is not taking place. (iii) When applying lean/rich cycling in the order of seconds, it appears that catalyst history and lean/rich timing affect the number of cycles required to arrive at a closed N balance. XRD results after lean exposure confirm the formation of barium nitrate in the bulk of the barium cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号