首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ca substitution for Sr on the phase, microstructure and microwave dielectric properties of the Sr5−x Ca x Nb4TiO17 composition series was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), an LCR meter, and vector network analyzer. Below 1450 °C, Sr5−x Ca x Nb4TiO17 (x = 1, 2, 3, or 4) compositions formed single-phase Sr4CaNb4TiO17, Sr3Ca2Nb4TiO17, Sr2Ca3Nb4TiO17, and SrCa4Nb4TiO17 ceramics, respectively. At x = 0 and 5, Sr5Nb4TiO17 and Ca5Nb4TiO17 formed, but along with Sr2Nb2O7 (at x = 0) and CaNbO3 and CaNb2O6 (at x = 5) secondary phases. Above 1450 °C, all the compositions formed two-phase ceramics. At low frequencies, a phase transition was observed in the composition Sr5Nb4TiO17. The substitution of Ca for Sr enabled processing of highly dense Sr2Ca3Nb4TiO17, with εr ~ 53.4, τf ~ −6.5 ppm/°C and Q u  × f o  ~ 1166 GHz. Further investigations are required to improve the quality factor of these ceramics for possible microwave applications.  相似文献   

2.
The influences of B2O3 and CuO (BCu, B2O3: CuO = 1:1) additions on the sintering behavior and microwave dielectric properties of LiNb0.6Ti0.5O3 (LNT) ceramics were investigated. LNT ceramics were prepared with conventional solid-state method and sintered at temperatures about 1,100 °C. The sintering temperature of LNT ceramics with BCu addition could be effectively reduced to 900 °C due to the liquid phase effects resulting from the additives. The addition of BCu does not induce much degradation in the microwave dielectric properties. Typically, the excellent microwave dielectric properties of εr = 66, Q × f = 6,210 GHz, and τ f  = 25 ppm/oC were obtained for the 2 wt% BCu-doped sample sintered at 900 °C. Chemical compatibility of silver electrodes and low-fired samples has also been investigated.  相似文献   

3.
Ultrafine strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN30) powders were prepared by urea method starting from a precursor solution constituting of Sr (NO3)2, Ba (NO3)2, NbF5, urea and polyvinyl alcohol (PVA) as surfactant. Their structural behavior and morphology were examined by means of X-ray diffractometry (XRD) and Scanning electron microscopy (SEM). The results showed that the SBN30 powders crystallized to a pure tetragonal phase at annealing temperatures as low as 750 °C. The average particle size of SBN powders subjected to 750 °C was of the order of 150–300 nm. With increasing calcination temperature,however, the average particle size of the calcined powders increased. The SBN30 ceramic prepared from urea method can be sintered at temperature as low as 1,225 °C. The transition temperature from the ferroelectric phase to the paraelectric phase and the relative dielectric permittivity of the SBN30 powder were less than the corresponding values of the bulk ceramic. The permittivity and loss tangent (tan δ) at room temperature (1 kHz) was found to be 930 and below 0.025.  相似文献   

4.
Phase purity, microstructure, sinterability and microwave dielectric properties of BaCu(B2O5)-added Li2ZnTi3O8 ceramics and their cofireability with Ag electrode were investigated. A small amount of BaCu (B2O5) can effectively reduce the sintering temperature from 1075°C to 925°C, and it does not induce much degradation of the microwave dielectric properties. Microwave dielectric properties of ε r = 23·1, Q × f = 22,732 GHz and τ f = − 17·6 ppm/°C were obtained for Li2ZnTi3O8 ceramic with 1·5 wt% BaCu(B2O5) sintered at 925°C for 4 h. The Li2ZnTi3O8 +BCB ceramics can be compatible with Ag electrode, which makes it a promising microwave dielectric material for low-temperature co-fired ceramic technology application.  相似文献   

5.
The microstructure, electrical properties, and DC-accelerated aging behavior of the ZnO-V2O5-Mn3O4 ceramics were investigated at different sintering temperatures of 850–925°C. The microstructure of the ZnO-V2O5-Mn3O4 ceramics consisted of ZnO grain as a primary phase, and Zn3(VO4)2 which acts as a liquid-phase sintering aid, in addition to Mn-rich phase as secondary phases. The maximum value (3,172 V/cm) and minimum value (977 V/cm) of breakdown field were obtained at sintering temperature of 850 and 900°C, respectively. The nonlinear coefficient exhibited the highest value, reaching 30 at 925°C and the lowest value, reaching 4 at 850°C. The optimum sintering temperature was 900°C, which exhibited not only high nonlinearity with 24 in nonlinear coefficient, but also the high stability, with %ΔE1mA = −0.9% and %∆α = −12.5% for DC-accelerated aging stress of 0.85 E1mA/85°C/24 h.  相似文献   

6.
Bi4Ti3.96Nb0.04O12 thin films were successfully deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel method and rapid thermal annealing. The effects of Nb-substitution and annealing temperature (500–800°C) on the microstructure and ferroelectric properties of bismuth titanate thin films were investigated. X-ray diffraction analysis reveals that the intensities of (117) peaks are relatively broad and weak at annealing temperatures smaller than 700°C. With the increase of annealing temperature from 500°C to 800°C, the grain size of Bi4Ti3.96Nb0.04O12 thin films increases. The Bi4Ti3.96Nb0.04O12 thin films annealed at 700°C exhibit the highest remanent polarization (2P r), 36 μC/cm2 and lowest coercive field (2E c), 110 kV/cm. The improved ferroelectric properties can be attributed to the substitution of Nb5+ to Ti4+ in Bi4Ti3O12 assisting the elimination of defects such as oxygen vacancy and vacancy complexes.  相似文献   

7.
Ca4-xMgxLa2Ti5O17 ceramics were prepared by a solid state ceramic route for x = 0, 0.5, 1, 2, 3 and 4. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction results show that the Ca4-x Mg x La2Ti5O17 adopts an orthorhombic crystal structure with no secondary phase observed for x from 0 to 0.5. Secondary phase, MgTiO3 occurs with further increasing doping level (1 ≤ x ≤ 3). When x = 4, mixture phases La0.66TiO2.993, MgTiO3 and a trace of unknown phase coexist. Ca4La2Ti5O17 ceramic exhibits a relative permittivity (εr) ~ 65, quality factor (Q × f) ~13,338 GHz (at ~4.75 GHz), and temperature coefficient of resonant frequency (τ f ) ~ 165 ppm/°C. The sintering temperature was distinctly reduced from 1,580 °C for x = 0 to 1,350 °C for x = 4. With increasing Mg content, εr and τf obviously decrease, while Q × f value initially decreases and then increases. The ceramic for x = 2 shows εr ~ 50, Q × f ~ 9,451 and τ f  ~ 62.5 ppm/°C. By the complete replacement of Ca with Mg, Mg4La2Ti5O17 ceramic sintered at 1,350 °C for 4 h combines a high dielectric permittivity (ε r  = 31), high quality factor (Q × f ~ 15,021) and near-zero temperature coefficient of resonant frequency (τ f  ~ 4.0 ppm/°C). The materials are suitable for microwave applications.  相似文献   

8.
The BaO–SrO–ZnO–Nb2O5 ceramic thin films have been deposited by radio frequency (RF) magnetron sputtering, using a Zn-enriched (Ba0.3Sr0.7) (Zn1/3Nb2/3)O3 target, followed by annealing in O2 atmosphere at 1,200 °C for 15, 30, 45, and 60 min. The results show that the surface morphologies of samples are crack-free and compact with well-crystallized structures. Grain sizes of thin films annealed at different times increase with the increasing annealing times, and when the annealing time is of 45 and 60 min, the grains change from spherical shape to columnar shape. RMS values of the thin films decrease with the increase in the annealing times from 15 to 30 min, while the RMS values increase with the increase in the annealing times from 30 to 60 min.  相似文献   

9.
The effects of BaCu(B2O5) (BCB) additions on the sintering temperature and microwave dielectric properties of Ba2Ti3Nb4O18 ceramic have been investigated. The addition of BCB can lower the sintering temperature of Ba2Ti3Nb4O18 ceramic from 1,250 to 900 °C and induce no obvious degradation of the microwave dielectric properties. Typically, the 5 wt% BCB added Ba2Ti3Nb4O18 ceramic sintered at 900 °C for 2 h exhibited good microwave dielectric properties of Q × f = 17,600 GHz, ε r = 38.2 and τ f  = 7 ppm/°C. The dielectric ceramic demonstrated stability against the reaction with the Ag electrode, which suggests that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

10.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

11.
Lead-free MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 ceramics have been fabricated by a conventional ceramic technique and their dielectric and piezoelectric properties have been studied. Our results show that a small amount of MnO2 (0.5–1.0 mol%) is enough to improve the densification of the ceramics and decrease the sintering temperature of the ceramics. The co-effects of MnO2 doping and Sb-substitution lead to significant improvements in the ferroelectric and piezoelectric properties. The K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping possesses optimum propeties: d 33 = 187 pC/N, k P = 47.2%, ε r = 980, tanδ = 2.71% and T c = 287 °C. Due to high tetragonal-orthorhombic phase transition temperature (T O-T ~ 150 °C), the K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping exhibits a good thermal stability of piezoelectric properties.  相似文献   

12.
The effects of CuO–Bi2O3–V2O5 additions on the sintering temperature and the microwave dielectric properties of MgTiO3 ceramics were investigated systematically. The CuO–Bi2O3–V2O5 (CuBiV) addition significantly lowered the densification temperature of MgTiO3 ceramics from 1400 °C to about 900 °C, which is due to the formation of the liquid-phase of BiVO4 and Cu3(VO4)2 during sintering. The saturated dielectric constant (εr) increased, the maximum quality factor (Qf) values decreased and the temperature coefficient of resonant frequency (τf) shifted to a negative value with the increasing CuBiV content, which is mainly attributed to the increase of the second phase BiVO4. MgTiO3 ceramics with 6 wt.% CuBiV addition sintered at 900 °C for 2 h have the excellent microwave dielectric properties: ε r= 18.1, Qf = 20300 GHz and τf = −57 ppm/ °C.  相似文献   

13.
The effects of B2O3–CuO (BCu, the weight ratio of B2O3 to CuO is 1:1) addition on the sintering behavior, microstructure, and the microwave dielectric properties of 3Li2O–Nb2O5–3TiO2 (LNT) ceramics have been investigated. The low-amount addition of BCu can effectively lower the sintering temperature of LNT ceramics from 1125 to 900 °C and induce no obvious degradation of the microwave dielectric properties. Typically, the 2 wt% BCu-added ceramic sintered at 900 °C has better microwave dielectric properties of ε r  = 50.1, Q × f = 8300 GHz, τ f  = 35 ppm/°C. Silver powders were cofired with the dielectric under air atmosphere at 900 °C. The SEM and EDS analysis showed no reaction between the dielectric ceramic and silver powders. This result shows that the LNT dielectric materials are good candidates for LTCC applications with silver electrode.  相似文献   

14.
New dielectric ceramics in the SrLa4−xSmxTi5O17 (0 ≤ x ≤ 4) composition series were prepared through a solid state mixed oxide route to investigate the effect of Sm+3 substitution for La+3 on the phase, microstructure and microwave dielectric properties. At x = 0–3, all the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1500–1580 °C. At x = 4, a mixture of Sm2Ti2O7 and SrTiO3 formed. The maximum Sm+3-containing single phase ceramics, SrLaSm3Ti5O17, exhibited relative permittivity (εr) = 42.6, temperature coefficient of resonant frequency (τ f ) = −96 ppm/oC and quality factor (Q u f o ) = 7332 GHz. An analysis of results presented here indicates that SrLa4−xSmxTi5O17 ceramics, exhibiting τ f  ~ 0 and εr ~ 53 could be achieved at x ~ 1.4 but at the cost of decrease in Q u f o .  相似文献   

15.
A new polymer-ceramic composite was prepared using PTFE and low loss Sr2ZnSi2O7. The dielectric properties of the composite were studied in the microwave and radiofrequency ranges. The relative permittivity (εr) and dielectric loss (tan δ) increased with the filler loading from 0.10 to 0.50 volume fractions (vf). The observed values of εr, thermal conductivity and coefficient of thermal expansion (CTE) were compared with the corresponding theoretical predictions. The ability of the composite towards moisture absorption resistance was studied as a function of filler loading. It was also found that the variation of εr was less than 2% in the temperature range 25–90 °C, at 1 MHz. For a filler content of 0.50 vf, the PTFE/Sr2ZnSi2O7 composite exhibited εr = 4.4, tan δ = 0.003 (at 4–6 GHz), CTE = 38.3 ppm/°C, thermal conductivity = 2.1 W/mK and moisture absorption = 0.09 wt%.  相似文献   

16.
Ba0.9Sr0.1TiO3 powder was processed at 80°C by reacting Ti sol in aqueous solutions that contained BaCl2, SrCl2 and NaOH at atmospheric pressure. Well-crystallized, spherical, nanosizes powders were formed by this method. The powders were found to have a cubic structure, which was retained even after heating at 900°C. Sintering at 1400°C, led to the formation of a tetragonal structure with a secondary phase of Ba6Ti17O40. Abrupt grain growth was observed at 1400°C. The electrical response of the sample sintered at 1400°C has three electrically different regions. Each region of the sample is represented by different RC element. Element 1 (R 1 C 1) is the most resistive and its capacitance ishigh (0.5 nFcm−1) indicating a thin region, probably the grain boundary. Element 2 (R 2 C 2) shows a smaller resistance value compared to element 1. The capacitance value of element 2 is temperature-dependent and displays a Curie–Weiss behaviour, indicative of a ferroelectric material above T c. The lower capacitance of C 2 (15 pFcm−1) indicates that it is a much thicker region than element 1 and can be assigned as a ferroelectric bulk region. Element 3 is probably an electrode effect.  相似文献   

17.
Hydrothermal synthesis of NaNbO3 fine powders was investigated, and the formation mechanism was revealed. The lowest temperature to form NaNbO3 powders was about 140 °C. An intermediate hexaniobate, Na8Nb6O19·13H2O, was formed first before the precursors were eventually converted to the perovskite phase. The step of dissolving Nb2O5 powders in OH solution and forming Nb6O19 8− ion was very important to the synthesis of NaNbO3. For [OH] = 3.0 M, Nb2O5 had the highest yield. There was another dissolvable sodium niobate in the hydrothermal system, which was stable when [OH] = 1.2 M. The reaction mechanism was in situ transformation. The reaction speed first increased then decreased with [OH]. High [OH] is not always favorable in preparing perovskite NaNbO3, and there is an optimum [OH].  相似文献   

18.
Polycrystalline samples of Ba4Ln2Fe2Ta8O30 (Ln = La and Nd) were prepared by a high temperature solid-state reaction technique. The formation, structure, dielectric and ferroelectric properties of the compounds were studied. Both compounds are found to be paraelectrics with filled tetragonal tungsten bronze (TB) structure at room temperature. Dielectric measurements revealed that the present ceramics have exceptional temperature stability, a relatively small temperature coefficient of dielectric constant (τ ε ) of −25 and −58 ppm/°C, with a high dielectric constant of 118 and 96 together with a low dielectric loss of 1.2 × 10−3 and 2.8 × 10−3 (at 1 MHz) for Ba4La2Fe2Ta8O30 and Ba4Nd2Fe2Ta8O30, respectively. The measured dielectric properties indicate that both materials are possible candidates for the fabrication of discrete multilayer capacitors in microelectronic technology.  相似文献   

19.
Nb2O5-modified PZT/ZnO nanowhisker (denoted as PZT/ZnOw–Nb2O5) piezoelectric composites were prepared by a solid state sintering technique. Effects of Nb2O5 addition on the microstructure, electrical, and mechanical properties of the PZT/ZnOw composites were investigated. With increasing Nb2O5 content, the grain size of the composites was reduced and the fracture mode changed from intergranular to intragranular gradually. Compared with the PZT/ZnOw composites, the dielectric, piezoelectric, and ferroelectric properties of the PZT/ZnOw–Nb2O5 composites were improved significantly, while mechanical properties were enhanced slightly. The optimum electrical and mechanical properties were achieved for the PZT/ZnOw composites modified with 0.75 wt% Nb2O5 sintered at 1150 °C, with dielectric permittivity εr, piezoelectric coefficient d 33, planar electromechanical coupling k p, remnant polarization P r, fracture toughness K IC, and flexural strength σf being on the order of 4930, 600 pC/N, 0.63, 29.2 μC/cm2, 1.56 MPa m1/2 and 130 MPa, respectively. The Nb2O5-modified PZT/ZnOw piezoelectric composites, with comparable electrical properties and improved mechanical properties than those of commercial PZT-5H ceramics, are promising candidates for further applications.  相似文献   

20.
Nanocrystalline ceramic powder of Ba0.8Bi2.133Nb1.6Ta0.4O9 was synthesized by chemical precursor decomposition method. The single-phase formation of the compound was confirmed using an X-ray diffraction technique and was found to be a tetragonal phase at room temperature. Average crystallite size and particle size were found to be 41 and 48.5 nm, which were analyzed through XRD and TEM respectively. The dielectric constant and tangent loss were measured in the frequency range 1 kHz–1 MHz after sintering the sample at 900 °C for 4 h. The polarization behavior was studied at an applied voltage of 6.2 kV/cm. Electrical properties of the material were investigated using complex impedance spectroscopy (CIS) technique, which revealed the presence of both grain and grain-boundary effects in the materials, which is also evidenced from the scanning electron microscope image. Grain conductivity indicated Arrhenius-type thermally activated process. AC conductivity spectrum obeys Jonscher’s universal power law. The electric modulus analysis suggests the possibility of hopping mechanism for electrical processes in the system with a non-debye type relaxation, which is supported by the impedance data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号