首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to meet the quality-of-service (QOS) requirements of the VOD (video-on-demand) service, and, on the other hand, to maximize the system throughput (revenue), it is essential that the admission control algorithm be carefully designed. Two new types of admission control schemes for the VOD service are proposed. They are the enhanced strict admission control (ESAC) and the probabilistic admission control (PAC). In the ESAC schemes, we propose to use more statistics (of small amount and easily pre-calculated) than the peak frame size of the stored video information to strictly guarantee the QOS requirement and to achieve potentially much higher throughput. In the PAC schemes, we propose to use similar statistics as used in the ESAC schemes to achieve even higher throughput at the cost of some small and controllable likelihood of lost/overdue data. The admission control problems are formulated as feasibility problems where different systems of simultaneous equations are considered. For each admission control scheme, if the corresponding system of simultaneous equations has a feasible solution, then admit the call request; otherwise, reject the call. Special structures of the systems are identified so as to facilitate the development of optimal real-time admission control algorithms. Efficient optimal algorithms are also proposed to calculate the minimal buffer requirement for a given performance objective  相似文献   

2.
3.
刘少阳  赵海涛  宋安  王杉  魏急波 《信号处理》2011,27(10):1625-1630
提出了一种保证Ad hoc网络中实时多媒体业务服务质量(QoS)的高效接纳控制方案。该机制采用跨层设计思想,以网络中每个节点MAC层感知的信息为基本依据,在新业务申请进入网络时在路由层发起接纳判决过程,在保证已有业务QoS不受损害的同时,新业务的QoS要求能够得到满足时才允许接入。该接纳过程具有以下特点:首先,它由目的节点发起反向逐跳进行,相对于以往由源节点发起的接纳控制过程可以节省一半的控制负载;其次,在每跳节点进行接纳判决的同时,对带宽进行暂时预留以防止过度接纳和过度预留情况的发生。分析和仿真证明了该机制能很好的保证实时业务的吞吐量,端到端延迟和延迟抖动等QoS参数,并且跟现有机制相比具有控制负载小,带宽利用率高的特点。   相似文献   

4.
In this paper, a novel call admission control (CAC) scheme using fuzzy logic is proposed for the reverse link transmission in wideband code division multiple access (CDMA) cellular communications. The fuzzy CAC scheme first estimates the effective bandwidths of the call request from a mobile station (MS) and its mobility information, then makes a decision to accept or reject the connection request based on the estimation and system resource availability. Numerical results are given to demonstrate the effectiveness of the proposed fuzzy CAC scheme in terms of new call blocking probability/handoff call dropping probability, outage probability, and resource utilization.  相似文献   

5.
Current admission controls seeking to optimize network utilization create a bias against wideband calls. This paper proposes a BNP (buffer without preemption) model that will hold a call in a buffer rather than directly reject it when the residual bandwidth is insufficient. Such a mechanism increases the throughput since the buffer can temporarily hold a call; it also reduces the bias for wideband calls since all calls are rejected when the buffer is not empty, even when the residual bandwidth suffices for narrowband calls. The performance of the models is analyzed by solving a two-dimensional Markov chain. A modified model, BNP W, in which a waiting time threshold is added, is further offered to prevent an overlong wait for the queued call. Also, different thresholds for heterogeneous calls are set to provide equal admitting probability for them. Analytical and numerical results demonstrate that both models actually achieve fair, that is, equal or similar, admitting probability for wideband and narrowband calls.  相似文献   

6.
The efficiency of call admission control (CAC) schemes in multiclass wireless networks should be evaluated not only with regard to the call blocking probability (CBP) achieved for every service class (SC) supported but also with regard to quality of service (QoS) and network efficiency criteria. In this article, four CAC schemes offering priority to SCs of advanced QoS requirements, based on guard channel policy, are studied and evaluated taking into account fairness and throughput criteria in addition to CBP. For the performance evaluation of the proposed CAC schemes and to examine fairness issues, two fairness indices are introduced along with a throughput metric. The analytical results, validated through extensive simulations, indicate that by appropriate selection of the CAC parameters satisfactory fairness and throughput are achieved while achieving low CBP.  相似文献   

7.
Call admission control (CAC) scheme serves as a useful tool for the WiMAX technology, which ensures that resources are not overcommitted and thereby, all existing connections enjoy guaranteed quality of service (QoS). CAC schemes largely rely on readily available information like currently available resources and bandwidth demand of the new call while making an acceptance or rejection decision once a new request arrives. Since wireless channels are not as reliable as wired communication, CAC scheme in WiMAX communication faces a serious challenge of making a right estimate of the usable channel capacity (i.e., effective throughput capacity) while computing the available resources in various communication scenarios. Existing CAC schemes do not consider the impact of mobility at vehicular speeds when computing the usable link capacity and available resources. The main limitation of such CAC scheme is that when a mobile node moves at a slower speed and makes a connection request to the base station (BS), the BS evaluates the situation based on the currently available information. The BS in such cases, is short‐sighted and often overestimates the available resources as it completely ignores the scenario when the SS reaches its top speed within a very short time after a CAC decision is made, causing a significant drop in usable throughput. In this paper, we address this limitation of existing WiMAX CAC schemes and propose a new CAC scheme that estimates the usable link capacity for WiMAX communication at vehicular speeds and uses this information while making a CAC decision. We also present a CAC scheme that takes the speed distribution model of a mobile node into account during the CAC decision making process. Simulation results confirm that the proposed scheme achieves lower dropping rate and improved QoS compared to existing schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The authors present an algorithm to provide local fairness for ring and bus networks with spatial bandwidth reuse. Spatial bandwidth reuse can significantly increase the effective throughput delivered by the network. The proposed algorithm can be applied to any dual ring or bus architecture such as MetaRing. In the dual bus configuration, when transporting ATM cells, the local fairness algorithm can be implemented using two generic flow control (GFC) bits in the ATM cell header. In the performance it is shown that this local fairness algorithm can exploit the throughput advantage offered by spatial bandwidth reuse better than a global fairness algorithm. This is accomplished because it ensures fair use of network resources among nodes that are competing for the same subset of links, while permitting free access to noncongested parts of the network. The performance advantage of the local fairness scheme is demonstrated by simulating the system under various traffic scenarios and comparing the results to that of the MetaRing SAT-based global fairness algorithm. It is also shown that under certain traffic patterns, the performance of this algorithm achieves the optimal throughput result predicted by the known Max-Min fairness definition  相似文献   

9.
Many wireless access systems have been developed recently to support users mobility and ubiquitous communication. Nevertheless, these systems always work independently and cannot simultaneously serve users properly. In this paper, we aim to integrate IPv6-based wireless access systems and propose a coordinated call admission control mechanism to utilize the total bandwidth of these systems to minimize the call blocking probabilities, especially the handoff call dropping probabilities. First, we propose an integrated hierarchical wireless architecture over IPv6-based networks to combine the wireless access systems including cellular systems (second-generation, General Packet Radio Service, or third-generation), IEEE 802.11 a/b/g WLAN, and Bluetooth. In the proposed architecture, mobile user can request a call with quality-of-service (QoS) requirements by any wireless network interfaces that can be accessed. When the proposed coordinated call admission control (CCAC) mechanism receives a request, it takes the QoS requirements of the incoming call and the available and reserved bandwidth of this wireless system into consideration to accept or reject this request. Besides, the mechanism can coordinate with other wireless systems dynamically to adjust the bandwidth reserved for handoff calls at each wireless system in this architecture so as to reduce the call blocking probabilities. Once the call is admitted, the mobile user is able to access heterogeneous wireless access networks via multiple interfaces simultaneously. Finally, we evaluate this system to show that the CCAC on the proposed architecture outperforms other mechanisms proposed before.  相似文献   

10.
The next generation wireless networks will be the coexistence of heterogeneous wireless technologies. Balancing the traffic load among different networks can effectively utilize the overall radio resources in the system. In this paper, we propose an efficient load balancing scheme for the heterogeneous overlay systems, which is applied in the call admission control process. If the available network(s) cannot provide enough resource for the request call without degrading the quality‐of‐service (QoS) obtained by the ongoing calls, the system will perform load balancing operations first by initiating vertical handoffs among networks in order to create more rooms for the request call. The load balancing algorithm is to minimize the variance between the network utilizations of the entire system, which can be formulated as a quadratic binary programming problem. Simulation results show that the proposed scheme can admit more calls into the system compared with the other three reference schemes and then improve the overall throughput. Meanwhile, the scheme can keep the networks working in effective states and provide a better QoS support for users. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Interference is a fundamental issue in wireless mesh networks (WMNs) and it seriously affects the network performance. In this paper we characterize the power interference in IEEE 802.11 CSMA/CA based wireless mesh networks using directional antennas. A model based centralized call admission control (CAC) scheme is proposed which uses physical collision constraints, and transmitter-side, receiver-side and when-idle protocol collision prevention constraints. The CAC assists to manage requests from users depending on the available bandwidth in the network: when a new virtual link establishment request from a user is accepted into the network, resources such as interface, bandwidth, transmission power and channel are allocated in the participating nodes and released once the session is completed. The proposed CAC is also able to contain the interference in the WMN by managing the transmission power of nodes.  相似文献   

12.
Development of fair and efficient bandwidth allocation and admission control schemes is one of the key issues in the design of IEEE 802.16 broadband wireless access systems in time division multiple access (TDMA) mode. In this article, the problem of bandwidth allocation and admission control is formulated as a Nash bargaining model. The nash bargaining solution (NBS) derived from the cooperative game is adopted to maximize the spectrum utilization. Analysis and simulation results show that there is a unique Pareto optimal bandwidth allocation solution by using NBS among various flows. Furthermore, maximum utility of the system can also be maintained by using the admission control policy with different number of connections and variable channel qualities. The total throughput of the proposed scheme is close to the maximal one, while significantly improving fairness compared to the existing solutions.  相似文献   

13.
下一代网络(NGN)将融合多种异构无线接入网络。为了在满足QoS限制下,最大化网络收益,在对WLAN/CDMA等效带宽的研究基础上,提出一种基于SMDP(半马尔可夫决策规划)的最优的联合呼叫接入控制(JCAC)方案,方案考虑了WLAN和CDMA网络间的相互影响,并将网络连接的联合呼叫控制问题等效成一个半马尔可夫决策过程,仿真表明方案相对于离散时间的MDP和在MDP基础上的JCAC算法具有明显的优势。  相似文献   

14.
The increasing variety and complexity of traffic in today's mobile wireless networks means that there are more restrictions placed on a network in order to guarantee the individual requirements of the different traffic types and users. Call admission control (CAC) plays a vital role in achieving this. In this paper, we propose a CAC scheme for multiple service systems where the predicted call usage of each service is used to make the admission decision. Our scheme enables real‐time traffic to be transmitted using shared bandwidth without quality of service (QoS) requirements being exceeded. This ensures that the utilization of the available wireless bandwidth is maximized. Information about the channel usage of each service is used to estimate the capacity of the cell in terms of the number of users that can achieve a certain bit error rate (BER). Priorities assigned to each service are used to allocate the network capacity. An expression for the handoff dropping probability is derived, and the maximum acceptance rate for each service that results in the estimated dropping probability not exceeding its QoS requirements is calculated. Each call is then accepted with equal probability throughout the duration of a control period. Achieved QoS during the previous control period is used to update the new call acceptance rates thus ensuring the dropping probability remains below the specified threshold. Simulations conducted in a wideband CDMA environment with conversational, streaming, interactive and background sources show that the proposed CAC can successfully meet the hard restraint on the dropping probability and guarantee the required BER for multiple services. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses when and how to adjust bandwidth allocation on uplink and downlink in a multi-service mobile wireless network under dynamic traffic load conditions. Our design objective is to improve system bandwidth utilization while satisfying call level QoS requirements of various call classes. We first develop a new threshold-based multi-service admission control scheme (DMS-AC) as the study base for bandwidth re-allocation. When the traffic load brought by some specific classes under dynamic traffic conditions in a system exceeds the control range of DMS-AC, the QoS of some call classes may not be guaranteed. In such a situation, bandwidth re-allocation process is activated and the admission control scheme will try to meet the QoS requirements under the adjusted bandwidth allocation. We explore the relationship between admission thresholds and bandwidth allocation by identifying certain constraints for verifying the feasibility of the adjusted bandwidth allocation. We conduct extensive simulation experiments to validate the effectiveness of the proposed bandwidth re-allocation scheme. Numerical results show that when traffic pattern with certain bandwidth asymmetry between uplink and downlink changes, the system can re-allocate the bandwidth on uplink and downlink adaptively and at the same time improve the system performance significantly.  相似文献   

16.
Distributed call admission control in mobile/wireless networks   总被引:18,自引:0,他引:18  
The major focus of this paper is distributed call admission control in mobile/wireless networks, the purpose of which is to limit the call handoff dropping probability in loss systems or the cell overload probability in lossless systems. Handoff dropping or cell overload are consequences of congestion in wireless networks. Our call admission control algorithm takes into consideration the number of calls in adjacent cells, in addition to the number of calls in the cell where a new call request is made, in order to make a call admission decision. This is done by every base station in a distributed manner without the involvement of the network call processor. The admission condition is simple enough that the admission decision can be made in real time. Furthermore, we show that our distributed call admission control scheme limits the handoff dropping or the cell overload probability to a predefined level almost independent of load conditions. This is an important requirement of future wireless/mobile networks with quality-of-service (QoS) provisioning  相似文献   

17.
陈赓  夏玮玮  沈连丰 《通信学报》2014,35(12):78-88
针对异构无线网络融合环境提出了一种基于多门限预留机制的自适应带宽分配算法,从而为多业务提供QoS保证。该算法采用多宿主传输机制,通过预设各个网络中不同业务的带宽分配门限,并基于各个网络中不同业务和用户的带宽分配矩阵,根据业务k支持的传输速率等级需求和网络状态的变化,将自适应带宽分配问题转化为一个动态优化问题并采用迭代方法来求解,在得到各个网络中不同业务和用户优化的带宽分配矩阵的同时,在带宽预留门限和网络容量的约束条件下实现网络实时吞吐量的最大化,以提高整个异构网络带宽的利用效率。数值仿真结果显示,所提算法能够支持满足QoS需求的传输速率等级,减小了新用户接入异构网络的阻塞概率,提高了平均用户接入率并将网络吞吐量最大提高40%。  相似文献   

18.
A novel bandwidth allocation strategy and a connection admission control technique arc proposed to improve the utilization of network resource and provide the network with better quality of service (QoS) guarantees in multimedia low earth orbit (LEO) satellite networks. Our connection admission control scheme, we call the probability based dynamic channel reservation strategy (PDR), dynamically reserves bandwidth for real-time services based on their handoff probability. And the reserved bandwidth for real-time handoff connection can also be used by new connections under a certain probability determined by the mobility characteristics and bandwidth usage of the system. Simulation results show that our scheme not only lowers the call dropping probability (CDP) for Class I real-time service but also maintains the call blocking probability (CBP) to certain degree. Consequently, the scheme can offer very low CDP for rcal-time connections while keeping resource utilization high.  相似文献   

19.
A novel call admission control (CAC) scheme for an adaptive heterogeneous multimedia mobile network with multiple classes of calls is investigated here. Different classes of calls may have different bandwidth requirement, different request call holding time and different cell residence time. At any time, each cell of the network has the capability to provide service to at least a given number of calls for each class of calls. Upon the arrival (or completion or hand off) of a call, a bandwidth degrade (or upgrade) algorithm is applied. An arriving call to a cell, finding insufficient bandwidth available in this cell, may either be disconnected from the network or push another call out of the cell toward a neighboring cell with enough bandwidth. We first prove that the stationary distribution of the number of calls in the network has a product form and then show how to apply this result in deriving explicit expressions of handoff rates for each class of calls, in obtaining the disconnecting probabilities for each class of new and handoff calls, and in finding the grade of service of this mobile network  相似文献   

20.
Measurement-Based Admission Control at Edge Routers   总被引:2,自引:0,他引:2  
It is very important to allocate and manage resources for multimedia traffic flows with real-time performance requirements in order to guarantee quality of service (QoS). In this paper, we develop a scalable architecture and an algorithm for admission control of real-time flows. Since individual management of each traffic flow on each transit router can cause a fundamental scalability problem in both data and control planes, we consider that each flow is classified at the ingress router and data traffic is aggregated according to the class inside the core network as in a DiffServ framework. In our approach, admission decision is made for each flow at the edge (ingress) routers, but it is scalable because per-flow states are not maintained and the admission algorithm is simple. In the proposed admission control scheme, an admissible bandwidth, which is defined as the maximum rate of a flow that can be accommodated additionally while satisfying the delay performance requirements for both existing and new flows, is calculated based on the available bandwidth measured by edge routers. The admissible bandwidth is a threshold for admission control, and thus, it is very important to accurately estimate the admissible bandwidth. The performance of the proposed algorithm is evaluated by taking a set of simulation experiments using bursty traffic flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号