共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
数据关联是移动机器人同时定位与建图(SLAM)中的一个难点问题.将经典的单匹配最近邻(ICNN)算法和分枝限界联合匹配(JCBB)算法结合起来,提出了一种基于局部地图的混合数据关联方法.在SLAM数据关联过程中,首先采用ICNN算法在局部地图中进行数据关联,并判断关联结果的正确性,若有错则采用JCBB算法在错误匹配处周围的局部区域内重新进行数据关联,以纠正错误的关联结果.实验结果表明,该方法实时性强,精确度高,适用于不同复杂程度的环境. 相似文献
3.
改进的极小连通支配集SLAM数据关联方法 总被引:2,自引:0,他引:2
地图的极小连通支配集(MCDS)方法解决了机器人同时定位与地图创建(SLAM)过程中数据关联的规模随地图的不断增长而增加的问题。为了进一步优化MCDS方法的性能,对它进行了两处改进:一是延迟建立极小连通支配集;二是自适应地搜索极小连通支配集。K时刻的极小连通支配集子图延迟一个时间步而在K+1时刻建立,根据环境特征的疏密,搜索与K时刻接近的N个时间步内获得的地图数据,同时应用联合相容检验准则和分支定界搜索算法进行数据关联。仿真结果表明,改进的极小连通支配集方法的数据关联结果是可信的,大大降低了算法计算复杂度。 相似文献
4.
SLAM问题的一种优化数据关联算法 总被引:1,自引:0,他引:1
联合相容分支定界算法(JCBB)存在“计算复杂度高”等缺点.为了优化JCBB算法在准确度和计算复杂度方面的性能,对它进行了三处改进:一是采用互斥准则和最优准则来提高关联的准确度;二是根据机器人的位姿和传感器的测量范围将数据关联限定在局部可能区域中;三是自适应地进行分批数据关联.仿真实验结果表明,优化JCBB算法(OJCBB)在保证准确度的同时大大降低了计算复杂度.VictoriaParkDataset实验表明,OJCBB算法的数据关联结果是可信的,而且OJCBB算法的计算效率远远高于JCBB算法. 相似文献
5.
传统的粒子滤波SLAM算法中,由于历史信息未被利用而导致估计精度较低。文中结合精确稀疏滞后状态信息滤波具有自然稀疏的信息矩阵因而估计精度高以及精确稀疏扩展信息滤波计算效率高的优点,将二者混合应用于粒子滤波SLAM算法中。不但充分应用信息矩阵记录的机器人位姿与特征间关系的历史信息从而提高估计的精度,而且克服机器人转动状态及环境特征疏密带来的应用缺陷。仿真与真实机器人实验的实验结果均表明文中算法的有效性与可行性。 相似文献
6.
一种改进的稀疏扩展信息滤波SLAM算法 总被引:1,自引:0,他引:1
如何得到精确一致的稀疏信息矩阵是稀疏扩展信息滤波同时定位与地图创建(SLAM)算法的关键.在对相关性进行详细深入分析的基础上,提出一种改进的信息矩阵稀疏规则.该规则利用稀疏时刻的观测信息,从全局上保留了与机器人相关性最强的特征.在不增加计算负担的情况下,提高算法的精度及一致性.最后,通过大量的Monte-Carlo仿真实验,验证该方法的有效性. 相似文献
7.
为了改进快速同时定位和地图创建(FastSLAM)算法的粒子集性能、提高估计精度,提出基于AMPF和FastSLAM的复合SLAM算法.将辅助边缘粒子滤波器(AMPF)与FastSLAM架构相结合,用AMPF估计机器人位姿,单个粒子的位姿提议分布用无轨迹卡尔曼滤波估计.设计与AMPF和FastSLAM架构均兼容的采样方法和粒子数据结构,在FastSLAM框架下用扩展卡尔曼滤波递归估计地图.实验表明,该算法的粒子集性能比FastSLAM 2.0算法好,并且它的位姿估计精度高于FastSLAM 2.0算法.此外,粒子数较少时,该算法的估计精度较高,从而可适当减少粒子数目来提高算法的计算效率. 相似文献
8.
工程上经常碰到非线性曲线辨识问题。本文探讨一种非线性极大似然-优化法并结合三次样条函数拟配法,形成统一的逐次逼近的直接辨识非线性曲线的非线性辨识方法。该法兼有极大似然法的唯一性、很好的收敛性和优化法直接处理非线性系统的能力,辨识出的样条函数曲线能无限地光滑地逼近非线性曲线。 相似文献
9.
针对仿射结构形式在丢失数据下的条件极大似然辨识问题, 首先引入交换矩阵将原随机矢量分解成观测和丢失部分; 然后确定出观测数据在丢失数据下的条件均值和条件方差, 以此建立条件似然函数; 进而从理论上给出了条件极大似然函数关于未知参数矢量、未知白噪声方差值和丢失数据的求导公式, 并从工程上给出一种可分离的优化算法; 最后通过仿真算例验证了该辨识方法的有效性. 相似文献
10.
VorSLAM算法中基于多规则的数据关联方法 总被引:2,自引:2,他引:2
针对单独依据马氏距离(Mahalanobis distance)的数据关联(Data association, DA)算法不能保证输出正确结果的问题, 结合VorSLAM (Voronoi partition based SLAM)算法所采用的混合地图表示方法的特点, 本文提出了一个基于多规则的数据关联方法. 该数据关联方法依据的规则包括局部搜索规则、传感器观测特征的单向性规则、 马氏距离规则和轮廓匹配规则,诸个规则在每个数据关联周期依次执行. 局部搜索规则和传感器观测特征的单向性规则可以有效地降低数据关联的搜索空间,同时可避免一类潜在的数据关联错误; 马氏距离利用了特征参数表示的特征位置信息寻找多个可能的数据关联假设; 根据VorSLAM算法中局部地图描述了产生对应特征的局部环境轮廓信息, 轮廓匹配规则从多个可能的数据关联假设中识别出正确的数据关联假设. 基于多规则的数据关联方法系统可靠地解决了VorSLAM算法中的数据关联问题, 方法的有效性通过两个室内环境的实验得到了验证. 相似文献
11.
针对在移动机器人同时定位与建图(SLAM)过程中如何快速准确获取数据关联结果的问题,提出了一种基于DBSCAN(density-based spatial clustering of application with noise)聚类分组的快速联合兼容SLAM数据关联算法(DFJCBB).首先,采用局部关联策略将参与关联的特征点限定在局部地图中;其次,针对多数环境中量测都有较明显的分布,采用一种基于密度聚类的方法DBSCAN对当前时刻的量测进行分组,从而得到若干关联度小的观测小组;最后,在每个小组中采用联合兼容分支定界(JCBB)算法进行数据关联,以获得每个小组量测与局部地图特征之间的最优关联解,并将这些关联解组合获得最终的关联结果.基于模拟器和标准数据集的仿真实验验证了该关联算法的性能,结果表明该关联算法在保证获得较高关联准确度的同时,大大降低了算法复杂度、缩短了运行时间,适用于解决不同复杂环境中的SLAM数据关联问题. 相似文献
12.
13.
为了对SLAM技术有更为全面的把握,在回顾过去三十年里视觉SLAM技术发展历程基础上,详细分析了视觉SLAM问题的本质与求解的复杂性。重点对在提高位姿估计精度、构建全局一致地图与提升算法求解效率上的最新研究成果进行了介绍,并对当前代表性的算法实现方案进行了分析与比较。针对未来大尺度环境、全生命周期应用需求,对现有算法框架的不足与最新研究趋势进行了归纳总结。最后,探讨了深度学习技术与视觉SLAM问题求解的关联性。 相似文献
14.
In recent years, reconstructing a sparse map from a simultaneous localization and mapping (SLAM) system on a conventional CPU has undergone remarkable progress. However, obtaining a dense map from the system often requires a high-performance GPU to accelerate computation. This paper proposes a dense mapping approach which can remove outliers and obtain a clean 3D model using a CPU in real-time. The dense mapping approach processes keyframes and establishes data association by using multi-threading technology. The outliers are removed by changing detections of associated vertices between keyframes. The implicit surface data of inliers is represented by a truncated signed distance function and fused with an adaptive weight. A global hash table and a local hash table are used to store and retrieve surface data for data-reuse. Experiment results show that the proposed approach can precisely remove the outliers in scene and obtain a dense 3D map with a better visual effect in real-time. 相似文献
15.
提出了一种新颖的、无需先验知识的、广泛适用于各种环境的激光雷达数据特征提取方法来解决同步定位与地图创建(SLAM)中的特征提取问题.这种方法采用经典的图像特征提取方法——Harris 角点探测器,具体来说,是多尺度Kanade-Tomasi 角点探测器,来提取特征.这种方法可以从各种尺度的测量数据中提取稳定、精确的特征点,并同时可以得到特征点描述器和不确定性信息.文章将这种方法应用在了软件仿真环境及经典数据集上,包括:2 维的维多利亚公园数据集、英特尔研究中心数据集(Intel Research Center dataset)以及3 维的麻省理工学院美国国防部高级研究计划局城市竞赛数据集(MIT DARPA Urban Challenge dataset).实验结果表明这种方法可以从各种环境中提取高精度、高重复性的稳定特征. 相似文献
16.
多机器人系统的通信状况能够直接影响协作同时定位与地图创建(Cooperative simultaneous localization and mapping, CSLAM)算法的设计和实现.根据对多机器人通信状况所作出假设的侧重点不同, 对多机器人CSLAM算法研究现状和进展进行综述.首先,简要介绍了基于完全连通通信条件的集中式CSLAM算法的特点和缺陷; 其次,结合多机器人系统初始相对位姿关系未知的情况,从地图配准、数据关联和地图融合等三个方面, 对基于通信范围或者带宽受限条件的分布式CSLAM算法的地图合并问题进行了分析和阐述; 进而重点对考虑稀疏动态通信状况的分布式CSLAM算法的最新研究成果进行了归纳总结. 最后指出多机器人CSLAM研究领域今后的研究方向. 相似文献
17.