共查询到20条相似文献,搜索用时 15 毫秒
1.
WDFTC is a wavelet-based distribution-free CUSUM chart for detecting shifts in the mean of a profile with noisy components. Exploiting a discrete wavelet transform (DWT) of the mean in-control profile, WDFTC selects a reduced-dimension vector of the associated DWT components from which the mean in-control profile can be approximated with minimal weighted relative reconstruction error. Based on randomly sampled Phase I (in-control) profiles, the covariance matrix of the corresponding reduced-dimension DWT vectors is estimated using a matrix-regularisation method; then the DWT vectors are aggregated (batched) so that the non-overlapping batch means of the reduced-dimension DWT vectors have manageable covariances. To monitor shifts in the mean profile during Phase II operation, WDFTC computes a Hotelling's T 2-type statistic from successive non-overlapping batch means and applies a CUSUM procedure to those statistics, where the associated control limits are evaluated analytically from the Phase I data. Experimentation with several normal and non-normal test processes revealed that WDFTC was competitive with existing profile-monitoring schemes. 相似文献
2.
3.
4.
Anthony Afful-Dadzie 《Quality Engineering》2016,28(3):313-328
Control charting cyber vulnerabilities is challenging because the same vulnerabilities can remain from period to period. Also, hosts (personal computers, servers, printers, etc.) are often scanned infrequently and can be unavailable during scanning. To address these challenges, control charting of the period-to-period demerits per host using a hybrid moving centerline residual-based and adjusted demerit (MCRAD) chart is proposed. The intent is to direct limited administrator resources to unusual cases when automatic patching is insufficient. The proposed chart is shown to offer superior average run length performance compared with three alternative methods from the literature. The methods are illustrated using three datasets. 相似文献
5.
THE STATISTICAL DESIGN OF CUSUM CHARTS 总被引:1,自引:0,他引:1
6.
The conventional cumulative sum (CUSUM) chart is usually designed based on a known shift size. In usual practice, shift size is often unknown and can be assumed to vary within an interval. With such a range of shift size, the dual CUSUM (DCUSUM) chart provides more sensitivity than the CUSUM chart. In this paper, we propose dual Crosier CUSUM (DCCUSUM) charts with and without fast initial response features to efficiently monitor the infrequent changes in the mean of a normally distributed process. Monte Carlo simulations are used to compute the run length characteristics of one‐sided and two‐sided DCCUSUM charts. These run length characteristics are compared with those of the CUSUM, Crosier CUSUM, Shewhart‐CUSUM, and DCUSUM charts in terms of the integral relative average run length. It turns out that the proposed chart shows better performance when detecting a range of mean shift sizes. A real dataset is considered to illustrate the implementation of existing and proposed charts. 相似文献
7.
Abdul Haq 《Quality and Reliability Engineering International》2018,34(5):939-952
An adaptive multivariate cumulative sum (AMCUSUM) control chart has received considerable attention because of its ability to dynamically adjust the reference parameter whereby achieving a better performance over a range of mean shifts than the conventional multivariate cumulative sum (CUSUM) charts. In this paper, we introduce a progressive mean–based estimator of the process mean shift and then use it to devise new weighted AMCUSUM control charts for efficiently monitoring the process mean. These control charts are easy to design and implement in a computerized environment compared with their existing counterparts. Monte Carlo simulations are used to estimate the run‐length characteristics of the proposed control charts. The run‐length comparison results show that the weighted AMCUSUM charts perform substantially and uniformly better than the classical multivariate CUSUM and AMCUSUM charts in detecting a range of mean shifts. An example is used to illustrate the working of existing and proposed multivariate CUSUM control charts. 相似文献
8.
Statistical process control charts are one of the most widely used techniques in industry and laboratories that allow monitoring of systems against faults. To control multivariate processes, most classical charts need to model process structure and assume that variables are linearly and independently distributed. This study proposes to use a nonparametric method named Support Vector Regression to construct several control charts that allow monitoring of multivariate nonlinear autocorrelated processes. Also although most statistical quality control techniques focused on detecting mean shifts, this research investigates detection of different parameter shifts. Based on simulation results, the study shows that, with a controlled robustness, the charts are able to detect the different applied disturbances. Moreover in comparison to Artificial Neural Networks control chart, the proposed charts are especially more effective in detecting faults affecting the process variance. 相似文献
9.
Abdul Haq 《Quality and Reliability Engineering International》2017,33(7):1549-1565
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are potentially powerful process monitoring tool because of their excellent speed in detecting small to moderate shifts in the process parameters. These control charts can be further improved by integrating them with the conforming run length control chart, resulting in the synthetic CUSUM (SynCUSUM) and synthetic EWMA (SynEWMA) charts. In this paper, we enhance the detection abilities of the SynCUSUM and SynEWMA charts using the auxiliary information. With suitable assumptions, the proposed control charts encompass the existing SynCUSUM, SynEWMA, CUSUM, and EWMA charts. Extensive Monte Carlo simulations are used to study the run length profiles of the proposed control charts. It turns out that the proposed near‐optimal control charts with the auxiliary information perform uniformly and substantially better than the existing near‐optimal SynCUSUM, SynEWMA, CUSUM, and EWMA charts. The proposed and existing control charts are also illustrated with the help of an example. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
10.
Computing the Percentage Points of the Run-Length Distributions of Multivariate CUSUM Control Charts
Multivariate CUSUM control charts are often used instead of the standard Hotelling's control charts in many practical problems when detection of small shifts in the process mean is important. However, design of multivariate CUSUM control charts are usually based on the average run length (ARL). In this work, we will compute the percentage points of the run-length distributions of two multivariate CUSUM control charts. It will be shown that interpretations based on ARL can be misleading since the in-control run-length distribution of a multivariate CUSUM is highly skewed. On the other hand, the percentage points of the run-length distribution provide additional information such as the median run length, early false out-of-control signals, and the skewness of the run-length distribution for a particular scheme. These extra information might provide quality control engineers further knowledge of a particular multivariate CUSUM control chart scheme. 相似文献
11.
12.
Sven Knoth Víctor G. Tercero-Gómez Marzieh Khakifirooz William H. Woodall 《Quality and Reliability Engineering International》2021,37(8):3779-3794
There is growing literature on new versions of “memory-type” control charts, where deceptively good zero-state average run-length (ARL) performance is misleading. Using steady-state run-length analysis in combination with the conditional expected delay (CED) metric, we show that the increasingly discussed progressive mean (PM) and homogeneously weighted moving average (HWMA) control charts should not be used in practice. Previously reported performance of methods based on these two approaches is misleading, as we found that performance is good only when a process change occurs at the very start of monitoring. Traditional alternatives, such as exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, not only have more consistent detection behavior over a range of different change points, they can also lead to better out-of-control zero-state ARL performance when properly designed. 相似文献
13.
Alireza Faraz Erwin Saniga Douglas Montgomery 《Quality and Reliability Engineering International》2019,35(1):116-126
We present a method to design control charts such that in‐control and out‐of‐control run lengths are guaranteed with prespecified probabilities. We call this method the percentile‐based approach to control chart design. This method is an improvement over the classical and popular statistical design approach employing constraints on in‐control and out‐of‐control average run lengths since we can ensure with prespecified probability that the actual in‐control run length exceeds a desired magnitude. Similarly, we can ensure that the out‐of‐control run length is less than a desired magnitude with prespecified probability. Some numerical examples illustrate the efficacy of this design method. 相似文献
14.
15.
Patrick D. Bourke 《Quality and Reliability Engineering International》2003,19(1):53-66
A continuous sampling plan, CSP‐SUM, is proposed based on the use of sums of run‐lengths of conforming items for deciding when to switch between the phases of sampling inspection and 100% inspection. The conventional measures of performance of CSPs such as the average outgoing quality, average fraction inspected, and the proportion passed under sampling inspection are evaluated for CSP‐SUM. Using these and other measures, comparisons with some standard CSPs are provided and indicate better performance for CSP‐SUM. Comparisons are also made with a recently‐proposed CSP utilizing CUSUMs, termed CSP‐CUSUM, and indicate that the performance of CSP‐SUM can be close to that of CSP‐CUSUM. A table is provided to aid the choice of parameters for the operation of CSP‐SUM. It is recommended that a conforming run‐length control chart be maintained in parallel with CSP‐SUM to detect significant upward shifts in the fraction defective of the process. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
16.
The cumulative count of conforming (CCC) chart is a new type of control chart used for the monitoring of high-quality processes. Instead of counting the number of non-conforming items in samples of fixed size, the cumulative number of conforming items between two non-conforming items is monitored. The CCC chart is convenient to use in a modern manufacturing environment where the product is inspected individually and automatically. The CCC chart has sometimes been confused with the cumulative sum (CUSUM) chart which has been shown to be more sensitive than the traditional Shewhart chart for small process shifts. In this paper the uses of these two types of charts are compared. It shown by numerical illustrations and analytical results that the two charts function in entirely different ways. However, the CUSUM concept can be applied to cumulative counts used in the CCC chart to improve its sensitivity for small process shifts when the process is producing at a very low non-conforming rate. © 1998 John Wiley & Sons, Ltd. 相似文献
17.
18.
Maryam Keshavarz Shervin Asadzadeh Seyed Taghi Akhavan Niaki 《Quality and Reliability Engineering International》2019,35(7):2314-2326
In recent years, much attention has been given to monitoring multistage processes in order to effectively improve the product reliability. To this end, the output of the process is investigated under special circumstances, and the values corresponding to reliability‐related quality characteristic are measured. However, analyzing reliability data is quite complicated because of their unique features such as being censored and obeying nonnormal distributions. A more sophisticated picture arises when the observations of the process are autocorrelated in some cases, which makes the application of previous control procedures futile. In this paper, the accelerated failure time (AFT) regression models have been modified in order to account for autocorrelated data. Then, a cumulative sum (CUSUM) control chart and an exponentially weighted moving average (EWMA) control chart based on conditional expected values have been proposed to monitor the quality variable with Weibull distribution while taking the effective covariates into consideration. Extensive simulation studies reveal that the CUSUM control chart outperforms its counterpart in detecting out‐of‐control conditions. Finally, a real case study in a textile industry has been provided to investigate the application of the CUSUM control scheme. 相似文献
19.
M. A. A. Cox 《Quality Engineering》2005,17(2):197-205
The cumulative sum (CUSUM) chart is widely employed in quality control to monitor a process or to evaluate historic data. CUSUM charts are designed to exhibit acceptable average run lengths both when the process is in and out of control. This paper introduces a functional technique for generating the parameters h and k for such a chart that will have specified average run lengths. It employs the method of artificial neural networks to derive the appropriate coefficients. An EXCEL spreadsheet to assist computing the parameters is presented. 相似文献
20.
The synthetic control chart for exponential data is discussed and an expression is derived for its average run length, as well as its design parameters. The synthetic control chart for exponentials is shown analytically to be a two-in-a-row rule. This chart is compared with the Shewhart chart for individuals and with the worst-case, lower-sided exponential EWMA and CUSUM charts. While the synthetic control chart for exponentials outperforms the Shewhart chart for individuals, the EWMA and CUSUM charts are shown to be far superior in detecting decreases in the exponential mean. 相似文献